Definiertheit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:43 So 16.12.2007 | Autor: | Owen |
Aufgabe | Auf welchem Intervall ist die folgende Funktion definiert, wo ist sie differenzierbar und wie lautet ihre Ableitung?
[mm] f(x)=((x^{0.5}*x)^{0.5}*x)^{0.5} [/mm] |
Ich bin nun folgendermaßen vorgegangen:
[mm] f(x)=((x^{0.5}*x)^{0.5}*x)^{0.5}=\wurzel{\wurzel{\wurzel{x}*x}*x}=x^{\bruch{7}{8}}
[/mm]
ist definiert im Intervall [mm] [0,\infty[ [/mm] , [mm] x\in\IR^{+}
[/mm]
f´ [mm] (x)=\bruch{7}{8}*x^{{\bruch{-1}{8}}}=\bruch{7}{8}*\bruch{1}{\wurzel[8]{x}}.
[/mm]
Mir gehts zum einen nun um das Verständnis der Frage" wo ist sie differenzierbar"? Bei dieser Aufgabe müsste sie bei [mm] \IR\ge0 [/mm] differenzierbar sein. Man schaut sich also quasi an, in welchem Intervall die Ableitung definiert ist. Ist das so richtig? Zum anderen möchte ich die genaue Schreibweise dafür wissen, wie man aufschreibt, in welchem Intervall eine Funktion definiert ist. Ist meine Schreibweise oben richtig?
|
|
|
|
Guten Tach und einen schönen dritten Advent
Also die Funktion ist: f(x) [mm] \wurzel[8]{x^7}. [/mm] Diese ist definiert für [mm] x\in [0,\infty). [/mm] Allerdings ist es nicht richtig dass die Ableitung für x =0 Existiert.
Das sieht man wenn man [mm] \limes_{h\rightarrow 0} \bruch{f(0+h) - f(0)}{h} [/mm] anschaut. Dieser Grenzwert geht gegen [mm] +\infty [/mm] existiert also nicht. Also ist die Funktion diffbar für [mm] x\in (0,\infty) [/mm]
Einen schönen Tach noch
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:14 So 16.12.2007 | Autor: | Owen |
Danke das wünsche ich dir auch,
hmmm...muss man denn bei dem Intervall nicht zusätzlich die Zahlenmenge angeben? Weil es sich im Intervall [mm] x\in [0,\infty) [/mm] um beliebige Zahlen handeln könnte(gerade, ungerade,....). Zudem ist es mir nicht ganz klar, warum der Grenzwert [mm] +\infty [/mm] zeigen kann, ob 0 enthalten ist oder nicht. Ist dies immer so?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 So 16.12.2007 | Autor: | leduart |
Hallo
einen existierenden [mm] GW=\infty [/mm] gibt es nicht, also bei 0 nicht diffb.
es ist üblich, die Intervalle (a,b) als Intervalle reeller Zahlen zu betrachten, und das nicht extra dazu zu sagen aber [mm] x\in \IR^+/0 [/mm] ist natürlich genausogut.
Musst du wiseen ,was bei euch üblich!
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:34 So 16.12.2007 | Autor: | Owen |
ok, habe ich soweit verstanden, vielen Dank
|
|
|
|