matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDarstellende Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Darstellende Matrix
Darstellende Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 24.09.2009
Autor: ufuk

Aufgabe
[Dateianhang nicht öffentlich]

Hallo!

Hier komme ich an einer Stelle nicht ganz weiter.

Ich benutze folgenden Ansatz:

[mm] M_{B}^{A}(F)=(K_{B}(F(a_1)), K_{B}(F(a_2)), [/mm] ... [mm] K_{B}(F(a_n))) [/mm]

A und B sind die Basen.

Auf diese Weise komme ich bis hierhin:

[mm] M_{\varepsilon}^{\varepsilon}(P_a)=(K_{\varepsilon}(\cos{\varphi}*a),K_{\varepsilon}(\sin{\varphi}*a)) [/mm]

Nur wie drücke ich jetzt a zur Basis [mm] \varepsilon [/mm] aus?

ratloser Gruß

ufuk


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Do 24.09.2009
Autor: leduart

Hallo
keine Ahnung was deine K und F sind. dehalb kann ich zu deinem Ansatz nichts sagen. Aber [mm] a=|a|*sin\phi*e_x+|a||*cos\phi*e_y [/mm]
War das die Frage?
Gruss leduart

Bezug
                
Bezug
Darstellende Matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:37 Fr 25.09.2009
Autor: ufuk


>  keine Ahnung was deine K und F sind.

F ist die Lineare Abbildung, K sind die Koordinaten zur Basis B.

Vielleicht gehe ich die Aufgabe ja auch komplett falsch an, weiß jemand einen beliebigen anderen Lösungsweg?

Bezug
        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Fr 25.09.2009
Autor: angela.h.b.


> [Dateianhang nicht öffentlich]
>  Hallo!
>  
> Hier komme ich an einer Stelle nicht ganz weiter.
>
> Ich benutze folgenden Ansatz:
>  
> [mm]M_{B}^{A}(F)=(K_{B}(F(a_1)), K_{B}(F(a_2)),[/mm] ...
> [mm]K_{B}(F(a_n)))[/mm]
>  
> A und B sind die Basen.
>  
> Auf diese Weise komme ich bis hierhin:
>  
> [mm]M_{\varepsilon}^{\varepsilon}(P_a)=(K_{\varepsilon}(\cos{\varphi}*a),K_{\varepsilon}(\sin{\varphi}*a))[/mm]


Hallo,

wir haben also lt. Aufgabenstellung die Basis A:=(a, b) mit |a|=1 und [mm] a\perp [/mm] b, sowie die ONB [mm] E:=(e_x, e_y). [/mm]

Jetzt schauen wir uns erstmal an, was die Abbildung [mm] P_a [/mm] mit den Basisvektoren macht:

[mm] P_a(a)=a [/mm]
[mm] P_a(b)=0. [/mm]


Damit kannst Du [mm] M_A^A(P_a) [/mm] schon aufstellen.


Jetzt überlegen wir uns noch, wie die Basisvektoren zusammenhängen:

[mm] a=cos\phi e_x +sin\phi e_y [/mm]
b= -|b| [mm] sin\phi e_x+|b|cos\phi e_y. [/mm]

Damit habe ich die eigentliche Frage wohl schon beantwortet.

Gruß v. Angela







Bezug
                
Bezug
Darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Fr 25.09.2009
Autor: ufuk


> Hallo,
>  
> wir haben also lt. Aufgabenstellung die Basis A:=(a, b) mit
> |a|=1 und [mm]a\perp[/mm] b, sowie die ONB [mm]E:=(e_x, e_y).[/mm]
>  
> Jetzt schauen wir uns erstmal an, was die Abbildung [mm]P_a[/mm] mit
> den Basisvektoren macht:
>  
> [mm]P_a(a)=a[/mm]
>  [mm]P_a(b)=0.[/mm]
>  
>
> Damit kannst Du [mm]M_A^A(P_a)[/mm] schon aufstellen.

Das wäre dann einfach [mm] \pmat{ a & 0} [/mm] ?

>  
>
> Jetzt überlegen wir uns noch, wie die Basisvektoren
> zusammenhängen:
>  
> [mm]a=cos\phi e_x +sin\phi e_y[/mm]
>  b= -|b| [mm]sin\phi e_x+|b|cos\phi e_y.[/mm]
>  
> Damit habe ich die eigentliche Frage wohl schon
> beantwortet.
>
> Gruß v. Angela

Dann wäre [mm]M^A_\varepsilon(P_a)[/mm] also:

[mm] \pmat{ cos\phi e_x +sin\phi e_y & 0 } [/mm] ?

Bleiben noch die zwei Fälle [mm]M_\varepsilon^\varepsilon(P_a)[/mm] und [mm]M_A^\varepsilon(P_a)[/mm]


[mm]M_\varepsilon^\varepsilon(P_a)[/mm] = ?

[mm]M_A^\varepsilon(P_a)[/mm] = ?

Dafür müsste ich dann [mm] e_x [/mm] und [mm] e_y [/mm] durch a und b ausdrücken?




Bezug
                        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Fr 25.09.2009
Autor: angela.h.b.


> > Hallo,
>  >  
> > wir haben also lt. Aufgabenstellung die Basis A:=(a, b) mit
> > |a|=1 und [mm]a\perp[/mm] b, sowie die ONB [mm]E:=(e_x, e_y).[/mm]
>  >  
> > Jetzt schauen wir uns erstmal an, was die Abbildung [mm]P_a[/mm] mit
> > den Basisvektoren macht:
>  >  
> > [mm]P_a(a)=a[/mm]
>  >  [mm]P_a(b)=0.[/mm]
>  >  
> >
> > Damit kannst Du [mm]M_A^A(P_a)[/mm] schon aufstellen.
>  
> Das wäre dann einfach [mm]\pmat{ a & 0}[/mm] ?

Hallo,

nein.

Du hast doch in Deinem anderen Post geschreiben, was in den Spalten der Matrix stehen muß:

die Bilder der Basisvektoren von A, also [mm] P_a(a) [/mm] und [mm] P_a(b), [/mm] in Koordinaten bzgl der Basis A.

Wie lautet a in Koordinaten bzgl A=(a,b), und wie lautet 0 in diesen Koordinaten?

>  
> >  

> >
> > Jetzt überlegen wir uns noch, wie die Basisvektoren
> > zusammenhängen:
>  >  
> > [mm]a=cos\phi e_x +sin\phi e_y[/mm]
>  >  b= -|b| [mm]sin\phi e_x+|b|cos\phi e_y.[/mm]
>  
> >  

> > Damit habe ich die eigentliche Frage wohl schon
> > beantwortet.
> >
> > Gruß v. Angela
>  
> Dann wäre [mm]M^A_\varepsilon(P_a)[/mm] also:
>  
> [mm]\pmat{ cos\phi e_x +sin\phi e_y & 0 }[/mm] ?

Du mußt die  Vektoren  [mm] cos\phi e_x +sin\phi e_y [/mm] und 0 in Koordinaten bzgl. der Basis [mm] \varepsilon=(e_x, e_y) [/mm] schreiben.

Also ist  [mm]M^A_\varepsilon(P_a)[/mm] [mm] =\pmat{cos\phii&0\\sin\phi&0} [/mm]


>  
> Bleiben noch die zwei Fälle [mm]M_\varepsilon^\varepsilon(P_a)[/mm]
> und [mm]M_A^\varepsilon(P_a)[/mm]
>
>
> [mm]M_\varepsilon^\varepsilon(P_a)[/mm] = ?

In die Spalten dieser Matrix gehören die Bilder von [mm] e_x [/mm] und [mm] e_y [/mm] in Koordinaten bzgl. [mm] \varepsilon. [/mm]

>  
> [mm]M_A^\varepsilon(P_a)[/mm] = ?
>  
> Dafür müsste ich dann [mm]e_x[/mm] und [mm]e_y[/mm] durch a und b
> ausdrücken?

In die Spalten dieser Matrix gehören die Bilder von [mm] e_x [/mm] und [mm] e_y [/mm] in Koordinaten bzgl. A.

Gruß v. Angela

>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]