matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL mit Potenzreihenansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL mit Potenzreihenansatz
DGL mit Potenzreihenansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Di 31.07.2007
Autor: aXe

Aufgabe
Man löse folgende AWA durch den Potenzreihenansatz

Hallo,
also ich werde mit was ganz schrecklichem gequält...Potenzreihenansatz. Erstmal zu Aufgabe:
[mm](1+x)y''+2y=x² , y(0)=y'(0)=1[/mm]

Also der Ablauf hab ich mehr oder weniger verstanden, das Problem besteht bei mir eher bei den Summen die entstehen. Meine Vorgehensweise:
Ansatz: [mm] y=\summe_{k=0}^\infty a_k x^k, y'=\summe_{k=1}^\infty ka_k x^k-1, y''=\summe_{k=2}^\infty k(k-1)a_k x^{k-2}[/mm] .Den ganzen Krempel dann oben in die Gleichung einsetzen.
So, nun muss man eben zusehen, in den Summen alles auf das gleiche [mm]x^k[/mm] zu bringen. Aber eben hier liegt meine Schwierigkeit. Vorallem wegen der Indextransformation. Was mache ich mit den Vorfaktoren wie [mm](1+x)[/mm] ?
Ich schreibe noch kurz noch nach dem Schritt mit dem Einsetzen hin:
[mm](1+x)\summe_{k=2}^\infty k(k-1) a_k x^{k-2} + 2\summe_{k=0}^\infty a_k x^k[/mm]
Was muss ich nun weiter machen? Wäre nett wenn ihr es hinschreiben könntet, dann kann ich sehen ob ich es nachvollziehen kann.

gruß aXe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL mit Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 31.07.2007
Autor: Hund

Hallo,

das (1+x) kannst du in die ertse Summe mitreinziehen und dann gilt weiter:

[mm] \summe_{k=2}^{infty} {(1+x)k(k-1)a_{k}x^{k-2}}+... [/mm]
[mm] =\summe_{k=0}^{infty} {(k+2)(k+1)a_{k+2}x^{k}}+... [/mm]

Jetzt kann man beide Summen zusammenziehen und dann [mm] x^{k} [/mm] in der Summe ausklammern.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
DGL mit Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Di 31.07.2007
Autor: aXe

Also ich bin jetzt quasi am Ende angelangt beim Koeffizientenvergleich. Sieht sehr gut aus bisher, dein Tipp hat gut geholgen!

Mein Anfangswertproblem war [mm]y(1)=2, y'(1)=1[/mm]. Welche Koeffizienten würden dem jetzt entsprechen?
Meine Musterlösung sagt mir es wäre [mm]a_0=2, a_1=1[/mm] jedoch hätte ich eher gesagt [mm]a_0=1, a_1=2[/mm].
Wie kommt man nun drauf?

gruß, aXe

edit: habe es verplant, dass mein obiger text sich auf eine ganz andere aufgabe bezieht.
der vollständigkeit halber: die potenzreihe war um den entwicklungspunkt x=1 angesetzt. also muss y(1)=a0 und y'(1)=a1 sein.
hat sich im prinzip erledigt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]