matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL System: Bestimmung Orbite
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - DGL System: Bestimmung Orbite
DGL System: Bestimmung Orbite < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL System: Bestimmung Orbite: Tipp, Idee gesucht!
Status: (Frage) beantwortet Status 
Datum: 15:49 Di 06.11.2012
Autor: Blaubart

Aufgabe
Gegeben sei folgendes DGL System:
[mm] y'_{1}=3*y_{1}*y_{2}^{2} [/mm]
[mm] y'_{2}=y_{2}^{2}(y_{1}-y_{2}) [/mm]
a.) Bestimmen sie alle Orbiten, die aus einen einzelnen Punkt bestehen.

c.) Gibt es Lösungen [mm] (y_{1}(x),y_{2}(x)) [/mm] für die einer der Grenzwerte [mm] \limes_{x\rightarrow\infty}(y_{1}(x),y_{2}(x)) [/mm] oder [mm] \limes_{x\rightarrow -\infty}(y_{1}(x),y_{2}(x)) [/mm] existiert?


Hi,
vorweg bei Aufgabe b.) wurde nach dem 1. Integral der DGL gefragt. Dort bin ich mir sicher die richtige Lösung zu haben: G(x)= [mm] 1/2*y_{1}^{2}-3*y_{1}y_{2}=c. [/mm] Bei d.) wurde nach einer beschreibung der Orbiten gefragt, dort habe ich einfach ein c und ein [mm] y_{1} [/mm] gewählt und dann geguckt was ich für [mm] y_{2} [/mm] raus bekomme. Daraus habe ich graphen gebastelt und gut war.
So jetzt zum eigentlich Problem:
Ich weiß nicht was ich bei a.) bzw. c.) machen muss. Bei a.) vermutete ich, dass ich eine Funktion gleich Null setze und daraus die andere "exakter" bestimmen kann.
Beispiel, aus y'_{1}=0 folgt [mm] y'_{2}=-y_{2}^{3} [/mm] usw. Ist das jetzt mein Orbit?
Oder setze ich [mm] y_{1}=0 [/mm] bzw. [mm] y_{2}=0 [/mm] und löse dann auf?  
Das selbe bei c.). Naja ich gehe einfach davon aus, dass wenn ich a.) verstanden habe auch c.) machen kann :-)
Gruß
Blaubart

        
Bezug
DGL System: Bestimmung Orbite: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Di 06.11.2012
Autor: leduart

Hallo
wenn ich dein G(x) differenziere und [mm] y_1' [/mm] und [mm] y_2' [/mm] einsetze kommt nicht 0 raus? wie kommst du auf G(x)
2. wenn ein Punkt rauskommen soll  dann kannst du doch nicht einfach [mm] y_1=0 [/mm] setzen, dann ist dpch immer noch [mm] y_2 [/mm] eine funktion. ein punkt ist [mm] y_1=a, y_2=b [/mm] ; [mm] y_1'=0 y_2'=0 [/mm]
daraus finde die möglichen a,b
da stehen 2 gleiche lim, wohl x und nicht n gegen [mm] \infty, [/mm] aber was ist der Unterschied, steht ein Komma oder mal dazwischen?
Gruss leduart

Bezug
                
Bezug
DGL System: Bestimmung Orbite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Di 06.11.2012
Autor: Blaubart

Danke für deine Antwort.
Den Tippfehler habe ich beim Limes übersehen. Da sollte natürlich ein x stehen und kein n. Die beiden Limesse(?) unterscheiden sich aber. Das eine geht gegen plus Unendlich, das andere gegen minus unendlich.

Zu deiner Antwort:
wenn ich [mm] y_{1}=a, y_{2}=b [/mm] setze und (so ich wie dich verstanden habe)
[mm] y_{1}'= [/mm] 0 dann komm ich auf den Punkt [mm] y_{2}'= a*b^{2} [/mm] bzw. mit
[mm] y_{2}'=0 [/mm]   auf [mm] y_{1}'=9*b^{3} [/mm]
Ist das jetzt jeweils der Orbit?

Zu meinen g(x). Dort habe ich erst ein integrierenden Faktor berechnet [mm] (1/y^2_{2}) [/mm] und dann erst das Potenzial.

Bei c.) ist mir noch aufgefallen, das man ja statt einer richtigen Funktion ja auch [mm] y_{2}=0 [/mm] und [mm] y_{1}= [/mm] const. wählen kann. Das DGL ist noch erfüllt und da keine x abhänigkeit vorhanden ist, ist mir die unendlichkeit auch egal.

Gruß
Blaubart

Bezug
                        
Bezug
DGL System: Bestimmung Orbite: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Di 06.11.2012
Autor: leduart

Hallo
Punkt a,b als Lösung
[mm] 0=ab^2 [/mm] und [mm] 0=b^2*(a-b) [/mm]
nur richtig galls b=0, a beliebig
hast du G durch ableiten und einsetzen der y' überprüft?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]