matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 8. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL 8. Ordnung
DGL 8. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 8. Ordnung: Nullstellen
Status: (Frage) beantwortet Status 
Datum: 19:37 Mo 24.10.2011
Autor: al3pou

Aufgabe
Bestimmen Sie die allgemeine Lösung der folgenden Differentialgleichungen.

[mm] 64y^{8} [/mm] + [mm] 48y^{6} [/mm] + [mm] 12y^{4} [/mm] + y'' = 0


Also ich habe erstmal das Charakteristische Polynom aufgestellt und dann [mm] (\lambda)^{2} [/mm] ausgeklammert anschließend substituiert z = [mm] (\lambda )^{2} [/mm] und komme damit auf

   [mm] z(64z^{3} [/mm] + [mm] 48z^{2} [/mm] + [mm] 12z^{2} [/mm] + 1) = 0

Der nun entstandene Term besitzt aber keine reellen Nullstellen mehr. Wie berechne ich nun die komplexen Nullstellen? Ich habe keinen Schimmer und war auch nicht da, als diese Aufgabe besprochen wurde.


        
Bezug
DGL 8. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mo 24.10.2011
Autor: Fulla

Hallo al3pou,

> Bestimmen Sie die allgemeine Lösung der folgenden
> Differentialgleichungen.
>  
> [mm]64y^{8}[/mm] + [mm]48y^{6}[/mm] + [mm]12y^{4}[/mm] + y'' = 0

Die Exponenten stehen wohl für die Ableitungen...?

> Also ich habe erstmal das Charakteristische Polynom
> aufgestellt und dann [mm](\lambda)^{2}[/mm] ausgeklammert
> anschließend substituiert z = [mm](\lambda )^{2}[/mm] und komme
> damit auf
>  
> [mm]z(64z^{3}[/mm] + [mm]48z^{2}[/mm] + [mm]12z^{2}[/mm] + 1) = 0
>  
> Der nun entstandene Term besitzt aber keine reellen
> Nullstellen mehr. Wie berechne ich nun die komplexen
> Nullstellen? Ich habe keinen Schimmer und war auch nicht
> da, als diese Aufgabe besprochen wurde.

Den Term in der Klammer kannst du zu [mm] $(4z+1)^3$ [/mm] umformen, dann "siehst" du die übrigen Nullstellen schon fast :-)


Lieben Gruß,
Fulla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]