matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL- integrierender Faktor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL- integrierender Faktor
DGL- integrierender Faktor < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL- integrierender Faktor: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:11 Di 21.01.2014
Autor: RoughNeck

Aufgabe
Wir betrachten die Differentialgleichung [mm] tx^3+(1+2t^2 x^2) \frac{dx}{dt}=0, [/mm] x=x(t).
(a) Man finde einen integrierenden Faktor f, der nur von x abhängt und löse damit die DGL.
(b) Wir betrachten die Umkehrfunktion t=t(x) einer gesuchten Lösung x(t). Man beweise, dass t(x) die DGL [mm] \frac{dt}{dx}+\frac{2}{x}t(x) [/mm] = [mm] -\frac{1}{x^3}t^{-1}(x) [/mm] erfüllt, die vom Bernoulli-Typ ist. Man löse damit nochmals die ursprüngliche DGL.

Hallo an alle.

Ich muss zugeben, ich bin ein wenig ratlos was diese beiden Teilaufgaben betrifft. Ich verstehe schon nicht, was der integrierende Faktor sein soll und daher schon gar nicht, wie man diesen finden soll um damit eine DGL zu lösen.

Ich denke, dies muss ich wissen, um überhaupt erst weitere Fragen stellen zu können.

Beste Grüße.

        
Bezug
DGL- integrierender Faktor: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Mi 22.01.2014
Autor: Martinius

Hallo RoughNeck,

zu a)

Deine DGL:  $ [mm] tx^3+(1+2t^2 x^2) \frac{dx}{dt}=0 [/mm] $

[mm] $(t*x^3)\;dt+(1+2t^2 x^2)\; dx\;=\;0, [/mm] $

[mm] $M(t,x)\;dt+N(t,x)\;dx\;=\;0$ [/mm]

mit  [mm] $M_x\;=\;\frac{\partial\;M}{\partial\;x}\;=\;3*t*x^2$ [/mm]  und  [mm] $N_t\;=\;\frac{\partial\;N}{\partial\;t}\;=\;4*t*x^2$ [/mm]

[mm] $\frac{1}{M}*\left(M_x - N_t \right)\;=\;\frac{-tx^2}{tx^3}\;=\;\frac{-1}{x}$ [/mm]  eine Funktion von x allein.

Daher:  [mm] $I(x)\;=\;exp\left(\int \frac{1}{x} \right)\;=\; [/mm] x$

Nun multipliziert man die Ausgangs-DGL mit dem integrierenden Faktor:

[mm] $(t*x^4)\;dt+(x+2*t^2* x^3)\;dx=0 [/mm] $  (Prüfe auf Exaktheit.)

[mm] $\int (t*x^4)\;dt\;=\;\frac{1}{2}*t^2*x^4+f(x)$ [/mm]

[mm] $\int (x+2*t^2*x^3)\;dx\;=\;\frac{1}{2}*x^2+\frac{1}{2}*t^2*x^4+g(t)$ [/mm]

[mm] $f(x)\;=\;\frac{1}{2}*x^2$ [/mm]  und  [mm] $g(t)\;=\;0$ [/mm]


Daher:  [mm] $F(t,x)\;=\;\frac{1}{2}*x^2+\frac{1}{2}*t^2*x^4\;=\;C$ [/mm]


Irrtum vorbehalten.

LG, Martinius

Bezug
        
Bezug
DGL- integrierender Faktor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Fr 24.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]