DDurchschnitt von Sylowgruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:42 Mo 28.08.2006 | Autor: | VerenaB |
Aufgabe | Sei G eine Gruppe der Ordnung [mm] p^k*m, k\geq [/mm] 1.
Zeige, dass der Durchschnitt [mm] D_p [/mm] der p-Sylowgruppen normal in G ist, und dass gilt:
[mm] [G:D_p]|m!
[/mm]
|
Hallo,
ich hab obige Aussage entdeckt, und habe festgestellt, dass man sie gut verwenden kann, wenn es darum geht, zu zeigen,
dass eine Gruppe nicht einfach ist.
Doch ich weiß leider nicht, wie man sie beweisen kann... Hat jemand eine Idee?
Lg, Verena
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 Mo 28.08.2006 | Autor: | felixf |
Hallo Verena!
> Sei G eine Gruppe der Ordnung [mm]p^k*m, k\geq[/mm] 1.
> Zeige, dass der Durchschnitt [mm]D_p[/mm] der p-Sylowgruppen normal
> in G ist,
(Sorry, ich bemerke grad das ich nun $k$ fuer was anderes benutze.)
Das kannst du wie folgt beweisen: Seien [mm] $S_1, \dots, S_k$ [/mm] die $p$-Sylow-Untergruppen von $G$. Dann ist also [mm] $D_p [/mm] = [mm] \bigcap_{i=1}^k S_i$. [/mm] Du musst jetzt zeigen, dass $g [mm] D_p g^{-1} [/mm] = [mm] D_p$ [/mm] ist fuer jedes $g [mm] \in [/mm] G$. Nun ist $g [mm] D_p g^{-1} [/mm] = g [mm] \left( \bigcap_{i=1}^k S_i \right) g^{-1} [/mm] = [mm] \bigcap_{i=1}^k [/mm] (g [mm] S_i g^{-1})$.
[/mm]
Die Abbildung [mm] $\varphi [/mm] : G [mm] \to [/mm] G$, $x [mm] \mapsto [/mm] g x [mm] g^{-1}$ [/mm] ist ein Automorphismus von $G$, womit [mm] $\varphi(S_i) [/mm] = g [mm] S_i g^{-1}$ [/mm] wieder eine $p$-Sylowuntergruppe von $G$ ist. Also ist [mm] $\varphi(S_i) [/mm] = [mm] S_{\pi(i)}$ [/mm] fuer ein [mm] $\pi(i) \in \{ 1, \dots, k \}$. [/mm] Da [mm] $\varphi$ [/mm] ein Automorphismus ist, ist [mm] $\pi$ [/mm] injektiv und somit bijektiv! Also ist $g [mm] D_p g^{-1} [/mm] = [mm] \bigcap_{i=1}^k [/mm] (g [mm] S_i g^{-1}) [/mm] = [mm] \bigcap_{i=1}^k S_{\pi(i)} [/mm] = [mm] \bigcap_{i=1}^k S_i [/mm] = [mm] D_p$, [/mm] da die Permutation nichts am Ergebnis aendert.
> und dass gilt: [mm][G:D_p]|m![/mm]
Da muss ich nochmal etwas drueber nachdenken...
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:18 So 03.09.2006 | Autor: | statler |
Hallo Verena,
> Sei G eine Gruppe der Ordnung [mm]p^k*m, k\geq[/mm] 1.
> Zeige, dass der Durchschnitt [mm]D_p[/mm] der p-Sylowgruppen normal
> in G ist, und dass gilt:
> [mm][G:D_p]|m![/mm]
die Anzahl m' der p-Sylowgruppen ist dann doch ein Teiler von m, und müßte dann nicht [mm] G/D_{p} [/mm] mittels Konjugation auf der Menge der p-Sylowgruppen operieren, also eine Untergruppe der [mm] S_{m'} [/mm] sein?
Ich verlängere mal die Ablauffrist und denke selbst auch noch genauer nach.
Schönen Sonntag
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:50 Do 07.09.2006 | Autor: | kathrine |
hallo Dieter und Felix!
euch vielen, vielen herzlichen Dank für die bereitschaft, unsere (Verenas und meine) Fragen zu beantworten. Algebra (und Analysis) sind nun vorbei und deshalb unsere Aufmerksamkeit im Moment für diese beiden Fächer minimal, da die Zweitfächer bestritten werden müssen. Wenn du, Dieter, noch weiter nachdenken willst - wir haben eine Lösung gefunden und zwar über die Betrachtung von [mm] \bigcap_{g\in\\G} gPg^{-1}, [/mm] P p-Sylowgruppe; betrachte dann die Abbilgung [mm] \mu: G\to\\S(G/P) [/mm] mit der Vorschrift [mm] g\mapsto xP\mapsto\\gxP [/mm] wenn ich mich recht entsinne.... wobei mit S(G/P) die symmetrische Gruppe der Linksnebenklassen xP gemeint ist. irgendwas stimmt nicht mehr, aber ich hab grad mein algebraisches gehirn verloren. jedenfalls sollte irgendeine solche Abbildung es tun
liebe grüße
katrin
|
|
|
|