matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationCosinus Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Cosinus Integration
Cosinus Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cosinus Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Do 06.03.2014
Autor: racy90

Hallo


Ich muss bei einer Fourierreihe ein Integral bestimmen nur komme ich einfach nicht auf das richtige Ergebnis.

[mm] \integral_{}^{}{xcos(kx) dx} [/mm]

Ich hätte nun mittels partieller Integration gearbeitet


also so : [mm] x*sin(kx)/k-\integral_{}^{}{cos(kx) dx} [/mm] =x*sin(kx)/k-sin(kx)/k

Wolfram Alpha gibt mir aber diese Lösung [mm] an:\bruch{kx*sin(kx)+cos(kx)}{k^2} [/mm]


        
Bezug
Cosinus Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Do 06.03.2014
Autor: schachuzipus

Hallo racy90,

> Hallo

>
>

> Ich muss bei einer Fourierreihe ein Integral bestimmen nur
> komme ich einfach nicht auf das richtige Ergebnis.

>

> [mm]\integral_{}^{}{xcos(kx) dx}[/mm]

>

> Ich hätte nun mittels partieller Integration gearbeitet

Hätte ich auch probiert ...

>
>

> also so : [mm]x*sin(kx)/k-\integral_{}^{}{cos(kx) dx}[/mm]

Nein, das, was da im hinteren Integral steht, ist falsch!

Da muss doch [mm]-\int{\frac{\sin(kx)}{k} \ dx}[/mm] stehen ...

Regel:

[mm]\int{u(x)\cdot{}v'(x) \ dx} \ = \ u(x)\cdot{}v(x) \ - \ \int{u'(x)\cdot{}v(x) \ dx}[/mm]

mit [mm]u(x)=x[/mm] und [mm]v'(x)=\cos(kx)[/mm]


> =x*sin(kx)/k-sin(kx)/k

>

> Wolfram Alpha gibt mir aber diese Lösung
> [mm]an:\bruch{kx*sin(kx)+cos(kx)}{k^2}[/mm]

Kann sein, rechne nochmal nach ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]