matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenCosinusQ/Q
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - CosinusQ/Q
CosinusQ/Q < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

CosinusQ/Q: partiell Ableiten
Status: (Frage) beantwortet Status 
Datum: 11:53 So 21.06.2009
Autor: jolly08

Aufgabe
g=(2γcosQ)/(h.p.r)  - nach Q ableiten:
∂g/∂Q = (2γCosQ∂)/(hpr∂Q)

hallo, ich müsste bei einer gausschen fehlerrechnung diese gleichung partiell nach Q ableiten:
g=(2γcosQ)/(h.p.r)

also quasi: ∂g/∂Q = (2γCosQ∂)/(hpr∂Q)


ich weiss, dass sich die ∂ wegkürzen, aber irgendwie scheiter ich gerade dran, cosQ/Q zu kürzen

Q ist im Übrigen eine Zahl = 0,3°

bitte um hilfe...


(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt)


        
Bezug
CosinusQ/Q: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 So 21.06.2009
Autor: Tyskie84

Hallo

iund [willkommenmr]

Was sind denn diese h.p.r?

Wenn du deine Funktion nach [mm] \\Q [/mm] ableiten sollst dann heisst das einfach, dass du die übrigen Parameter sofern das welche sind als konstant betrachten sollst.

Dein [mm] \bruch{\partial{g}}{\partial{Q}} [/mm] scheint mir nicht richtig zu sein, denn schon allein aus der tatsache dass die Ableitung von [mm] \\cos(Q) [/mm] einfach [mm] -\\sin(Q) [/mm] ist.

[hut] Gruß

Bezug
                
Bezug
CosinusQ/Q: ?cosQ = -sinQ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 So 21.06.2009
Autor: jolly08

danke für dich rasche antwort

h= Steighöhe - ist bekannt
p= Dichte von Wasser - ebenfalls bekannt
r= Radius der Kapillare - auch bekannt

ich muss es aber so ableiten, weil ich das brauch für die gaußsche fehlerfortpflanzung

aber wenn ich in meinen taschenrechner cos0,3 eingeb, kommt 0,999... raus
und wenn ich -sin0,3 eintipp, dann hab ich -0,004712...

also versteh ich das irgendwie nicht, wie cosQ gleich -sinQ sein kann...

Bezug
                        
Bezug
CosinusQ/Q: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 So 21.06.2009
Autor: Al-Chwarizmi

hallo jolly,


>  h= Steighöhe - ist bekannt
>  p= Dichte von Wasser - ebenfalls bekannt
>  r= Radius der Kapillare - auch bekannt
>  
> ich muss es aber so ableiten, weil ich das brauch für die
> gaußsche fehlerfortpflanzung
>  
> aber wenn ich in meinen taschenrechner cos0,3 eingeb, kommt
> 0,999... raus
>  und wenn ich -sin0,3 eintipp, dann hab ich -0,004712...

denk noch dran, dass du möglicherweise das Bogenmaß
brauchst !!
  

> also versteh ich das irgendwie nicht, wie cosQ gleich -sinQ
> sein kann...

Das hat auch niemand behauptet !
Die Ableitung von cos(Q) nach der Variablen Q ist

      [mm] $\bruch{\partial}{\partial{Q}}\,cos(Q)\ [/mm] =\ [mm] -\,sin(Q)$ [/mm]

Da in deiner Funktion

      $\ g(Y,Q,h,p,r)\ =\ [mm] \bruch{2Y}{h*p*r}*cos(Q)$ [/mm]

ausser dem cos(Q) sonst nichts vorkommt, das noch
von Q abhängig ist, ist die partielle Ableitung nach Q
einfach:

      [mm] $\bruch{\partial}{\partial{Q}}\,g(Y,Q,h,p,r)\ [/mm] =\ [mm] -\,\bruch{2Y}{h*p*r}*sin(Q)$ [/mm]


LG

Bezug
                                
Bezug
CosinusQ/Q: thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 So 21.06.2009
Autor: jolly08

gaaanz supi - danke vielmals - so versteh ichs schon viel eher (obwohls ja Tyskie) auch schon erklärt hat...
und jetzt kommt auch gleich ein realistischer wert raus
danke euch beiden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]