matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenCholesky Zerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Cholesky Zerlegung
Cholesky Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cholesky Zerlegung: Lösen von LGS
Status: (Frage) beantwortet Status 
Datum: 11:03 So 18.11.2007
Autor: Yadis

Aufgabe
Gegeben: A =  [mm] \pmat{ 1 & -1 & 0 & 0 \\ -1 & 5 & -4 & 0 \\ 0 & -4 & 13 & -9 \\ 0 & 0 & -9 & 25} [/mm] und b = [mm] \vektor{0 \\ 0 \\ 0 \\ 16}. [/mm]
Lösen sie das System Ax = b.

Hallo.
Die Aufgabe oben ist mit Gauss schnell zu lösen, aber da die Matrix positiv definit und symmetrisch ist dachte ich mir, mache ich das doch mit Cholesky (passt auch grade in den Stoff).
Dabei habe ich folgende Zerlegung bekommen:

[mm] \pmat{ 1 & -1 & 0 & 0 \\ -1 & 5 & -4 & 0 \\ 0 & -4 & 13 & -9 \\ 0 & 0 & -9 & 25} [/mm] = [mm] \pmat{ 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -3 & 4} [/mm] * [mm] \pmat{ 1 & -1 & 0 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 4} [/mm]

Bei Cholesky gilt ja Ax = b <=> [mm] C^{T}Cx [/mm] = b.
Rechne ich aber damit bekomme ich das Ergebnis x = [mm] \vektor{4 \\ 4 \\ 4 \\ 4}, [/mm]
das richtige Ergebnis ist aber x = [mm] \vektor{1 \\ 1 \\ 1 \\ 1}. [/mm]
Nach langer Einleitung nun die kurze Frage:
Muss ich mit dem normalen b Vektor rechnen, wenn ich das Ergebnis mit Cholesky bestimmen will, oder aber mit der Wurzel von b, also b = [mm] \vektor{0 \\ 0 \\ 0 \\ 4}. [/mm]
Dann stimmt das Ergebnis nämlich wieder, jedoch finde ich in der Literatur keinen Hinweis darauf.
Danke für jede Hilfe =)

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cholesky Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 So 18.11.2007
Autor: Rene

die Zerlegung stimmt!

Du musst dich bei der Berechnung der Lösung vertan haben. Du kommst nämlich auf dein gesuchtes Ergebnis.

Nochmal die Vorgehensweise:

[mm]Ax=L^tLx=b[/mm]

i)   ersetze [mm]Lx = v[/mm]
ii)  löse [mm] L^tv = b[/mm]
iii) löse [mm]Lx = v[/mm]

Dann kommst du zu dem Ergebnis!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]