matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeChina die letzte!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathematik-Wettbewerbe" - China die letzte!
China die letzte! < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

China die letzte!: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 16:16 So 26.12.2004
Autor: Hanno

Hallo nochmals!

So, und nun die allerletzte Aufgabe! Los geht's:

Finde alle Funktionen [mm] $f:[1,\infty )\to [1,\infty [/mm] )$, die den folgenden Bedingungen genügen:
[mm] $f(x)\leq [/mm] 2(x+1)$
[mm] $f(x+1)=\frac{1}{x}\cdot\left( f^2(x)-1\right)$ [/mm]

Liebe Grüße und nun viel Spaß beim Rechnen! Ich hoffe auf rege Teilnahme :-)

Hanno

        
Bezug
China die letzte!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Fr 04.02.2005
Autor: g3mini

Hallo:
[mm] f'(x) = f'(x+1) = 1/x^2 (1-f^2(x)) +2/xf'(x)\\ \Rightarrow \frac{f'(x)}{1-f^2(x)} = \frac{1}{x^2-2x} [/mm]
Lösen der DGL ergibt:
[mm] f(x) = \frac{2}{(x-2)x^{-1}c-1}+1 [/mm]
c ist dann über die zwei gegebenen Bedingungen zu suchen...(könnte ja jemand anders machen (-; )

Bezug
                
Bezug
China die letzte!: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Fr 04.02.2005
Autor: Stefan

Hallo!

Nein, das kann man so  nicht machen. Erstens stimmen die Gleichungen zum Teil nicht, zweitens steht nirgendswo geschrieben, dass differenzierbare Funktionen gesucht sind.

Aber trotzdem Danke für den Versuch! :-)

Viele Grüße
Stefan

Bezug
        
Bezug
China die letzte!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:50 So 06.02.2005
Autor: Martin243

Hi,

hier mein Versuch:

Eine Funktion, die diese Bedingungen erfüllt, ist die Nachfolgerfunktion f(x) = x+1:
1. f(x) = x+1 < x+1 + x+1 = 2(x+1) [mm] \forall x\ge [/mm] 1
2. [mm] \bruch{1}{x}(f^{2}(x)-1) [/mm] = [mm] \bruch{1}{x}(x^{2}+2x+1-1) [/mm] = [mm] \bruch{x^{2}+2x}{x} [/mm] = x+2 = f(x+1)

Außerdem bildet die Funktion den Definitionsbereich auf [mm] [2;\infty) \subset [1;\infty) [/mm] ab.


Nun muss ich natürlich zeigen, dass es keine andere Funktion g dieser Art gibt. Dies tu ich, indem ich die Rekursion ausnutze, die dazu führt, dass eine kleine Abweichung von der Nachfolgerfunktion an einer Stelle zu immer größeren Abweichungen an späteren Stellen führt, so dass am Ende entweder Werte g(x)<1 oder g(x)>2(x+1) auftauchen.


Sei also an einer Stelle [mm] a\in [1;\infty) [/mm] der Funktionswert g(a) = [mm] f(a)+\varepsilon (\varepsilon>0). [/mm]
Dann gilt:
g(a+1) = [mm] \bruch{1}{a}(g^{2}(a)-1) [/mm]
= [mm] \bruch{1}{a}((f(a)+\varepsilon)^{2}-1) [/mm]
= [mm] bruch{1}{a}((f^{2}(a)+2f(a)\varepsilon+\varepsilon^{2}-1) [/mm]
= [mm] bruch{1}{a}(a^{2}+2a+1+2a\varepsilon+2\varepsilon+\varepsilon^{2}-1) [/mm]
= [mm] a+2+2\varepsilon+2\bruch{\varepsilon}{a}+\bruch{\varepsilon^{2}}{a} [/mm]

> [mm] f(a+1)+2\varepsilon [/mm]

Man sieht, dass sich die Abweichung bei Addition von 1 immer mindestens verdoppelt. Durch das exponentielle Wachstum dieser Abweichung würde die Bedingung g(x) [mm] \le [/mm] 2(x+1) (nur linear) für ein genügend großes x verletzt (das ohne Beweis...)

Analoges gilt, falls g(a) = [mm] f(a)[b]-\varepsilon[/b]. [/mm] Dann wird irgendwann die Bedingung g(x) [mm] \ge [/mm] 1 verletzt.


Also ist die Nachfolgerfunktion die einzige Funktion mit obigen Eigenschaften.


MfG
Martin

Bezug
                
Bezug
China die letzte!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mo 14.02.2005
Autor: Hanno

Hallo Martin!

Ein wenig unsauber ist es schon, aber ich glaube, dass die Grundidee die richtige ist. Auch wenn es nicht so schön ist, das hier ein wenig abzuwürgen, so stufe ich in der Annahme, dass deine Ausführungen nach einer formelleren Beschreibung zum Ziel führen, diese Aufgabe als gelöst ein.

Schön!

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]