matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesCharakteristisches Problem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Charakteristisches Problem
Charakteristisches Problem < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristisches Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 12.09.2012
Autor: rekees

Aufgabe
Matrix A(3x3) finden, mit höchstens 3 Nullen, die das charakteristische Polynom: P=(X-3)(x-2)(x-1)
hat

Hallo,
ich nochmal mit einem Problem was ich partout nicht gelöst bekomme.
Ich habe auch schon viel gegooglet und solche Begriffe wie Begleitmatrix gefunden, aber trotzdem komme ich damit nicht weiter. Gibt es dafür eine Praktikable Lösung? Ich habe auch schon versucht zu raten bzw logisch zu überlegen, aber trotzdem wurde es bisher gar nichts. Dass man unterschiedliche Matrizen erzeugen kann aus einem charakteristischen Polynom weiß ich, aber leider habe ich sonst nichts im Skript oder sonst wo gefunden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Charakteristisches Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mi 12.09.2012
Autor: MathePower

Hallo rekees,

> Matrix A(3x3) finden, mit höchstens 3 Nullen, die das
> charakteristische Polynom: P=(X-3)(x-2)(x-1)
>  hat
>  Hallo,
>  ich nochmal mit einem Problem was ich partout nicht
> gelöst bekomme.
>  Ich habe auch schon viel gegooglet und solche Begriffe wie
> Begleitmatrix gefunden, aber trotzdem komme ich damit nicht
> weiter. Gibt es dafür eine Praktikable Lösung? Ich habe
> auch schon versucht zu raten bzw logisch zu überlegen,
> aber trotzdem wurde es bisher gar nichts. Dass man
> unterschiedliche Matrizen erzeugen kann aus einem
> charakteristischen Polynom weiß ich, aber leider habe ich
> sonst nichts im Skript oder sonst wo gefunden.
>  


Dann schau mal unter Dreiecksmatrix.


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Charakteristisches Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mi 12.09.2012
Autor: rekees

Danke für den Hinweis, das hat mir schon sehr weitergeholfen. Die Determinante einer Diagonalmatrix ist die Multiplikation der Diagonalelemente und im Zuge dessen habe ich auch das charakteristische Polynom dazu gefunden.
Dafür gibt es ja dann die Regel [mm] \produkt_{i=1}^{n} [/mm] (X- [mm] y_i), [/mm] wenn X meine Eigenwerte dann sind. Was mich hier aber stutzig macht, ist wenn ich das Ganze zu Fuß ausrechne, also Det (A-yE) mache und dann Sarrus anwende kommt etwas ganz anderes raus und zwar nicht (X-1) sondern (1-x) mache ich hier irgendwo noch einen Fehler?

Abgesehen davon läßt sich die Matrix ja so rekonstruieren, wenn ich das richtig verstanden habe, dass ich dann die Werte (X-1)(X-2)(X-3) 1,2 und 3 in die Diagonale eintrage und darüber irgendeinen anderen Wert schreibe, welche ist dann egal. Habe ich das zumindest schon einmal richtig v ertsanden?

Bezug
                        
Bezug
Charakteristisches Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mi 12.09.2012
Autor: MathePower

Hallo rekees,

> Danke für den Hinweis, das hat mir schon sehr
> weitergeholfen. Die Determinante einer Diagonalmatrix ist
> die Multiplikation der Diagonalelemente und im Zuge dessen
> habe ich auch das charakteristische Polynom dazu gefunden.
>  Dafür gibt es ja dann die Regel [mm]\produkt_{i=1}^{n}[/mm] (X-
> [mm]y_i),[/mm] wenn X meine Eigenwerte dann sind. Was mich hier aber
> stutzig macht, ist wenn ich das Ganze zu Fuß ausrechne,
> also Det (A-yE) mache und dann Sarrus anwende kommt etwas
> ganz anderes raus und zwar nicht (X-1) sondern (1-x) mache
> ich hier irgendwo noch einen Fehler?
>  


Möglicherweise.


> Abgesehen davon läßt sich die Matrix ja so
> rekonstruieren, wenn ich das richtig verstanden habe, dass
> ich dann die Werte (X-1)(X-2)(X-3) 1,2 und 3 in die
> Diagonale eintrage und darüber irgendeinen anderen Wert
> schreibe, welche ist dann egal. Habe ich das zumindest
> schon einmal richtig v ertsanden?


Ja, und unterhalb der Diagonalen dann die Nullen.


Gruss
MathePower

Bezug
                                
Bezug
Charakteristisches Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Mi 12.09.2012
Autor: rekees

Vielen lieben Dank für deine Hilfe, ich habe das mit der Determinante jetzt auch herausgefunden, indem ich einige andere Quellen zusätzlich noch konsultiert habe (wiki unter anderem). Anscheinend kann ich Det(A-yE) auch als Det(yE-A) schreiben, was nur einen unterschied bei ungeraden n macht für eine Matrix. Das würde dann alles erklären.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]