matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchyscher Grenzwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Cauchyscher Grenzwertsatz
Cauchyscher Grenzwertsatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyscher Grenzwertsatz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:53 Fr 25.12.2009
Autor: ChopSuey

Hallo,

für eine Aufgabe aus einem Tutorium muss ich den den Grenzwertsatz von Cauchy beweisen.
Nun geht es mir aber vielmehr darum, den Beweis dafür erst einmal überhaupt zu verstehen.

Ich hoffe, dass mir jemand dabei helfen kann.

Warum ist, unter der Voraussetzung, dass $\ [mm] a_n \to [/mm] a $, das arithmetische Mittel $\ [mm] \frac{a_1 +..+ a_n}{n} [/mm] $ ebenfalls konvergent mit dem Grenzwert $\ a $ ?

Der Beweis steht unter anderem im Heuser, doch ich verstehe ihn leider nicht.

Wäre jemand so nett, mir das ganze ein wenig näher zu bringen?

Würde mich sehr freuen, auch über Denkanstöße.
Viele Grüße
ChopSuey

        
Bezug
Cauchyscher Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 26.12.2009
Autor: MatthiasKr

Hallo,

> Hallo,
>  
> für eine Aufgabe aus einem Tutorium muss ich den den
> Grenzwertsatz von Cauchy beweisen.
>  Nun geht es mir aber vielmehr darum, den Beweis dafür
> erst einmal überhaupt zu verstehen.
>  
> Ich hoffe, dass mir jemand dabei helfen kann.
>  
> Warum ist, unter der Voraussetzung, dass [mm]\ a_n \to a [/mm], das
> arithmetische Mittel [mm]\ \frac{a_1 +..+ a_n}{n}[/mm] ebenfalls
> konvergent mit dem Grenzwert [mm]\ a[/mm] ?
>  
> Der Beweis steht unter anderem im Heuser, doch ich verstehe
> ihn leider nicht.

wie waere es denn, wenn du die stelle im beweis postest, die du nicht verstehst? So wirst du eher eine antwort bekommen.

gruss
Matthias



>  
> Wäre jemand so nett, mir das ganze ein wenig näher zu
> bringen?
>
> Würde mich sehr freuen, auch über Denkanstöße.
> Viele Grüße
>  ChopSuey


Bezug
                
Bezug
Cauchyscher Grenzwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Mo 28.12.2009
Autor: ChopSuey

Hallo Matthias,

danke für Deinen Einwand. Ich bin mal so frei, und zitiere aus dem Heuser. Falls es da irgendwelche rechtlichen Probleme oder ähnliches gibt, nehm ich das wieder raus.

____________

Strebt $\ [mm] a_n \to [/mm] 0 $, so liegen für hinreichend große n, etwa für alle $\ n > m $, die Glieder $\ [mm] a_n [/mm] $ "dicht bei 0", kurz: $\ [mm] a_n \approx [/mm] 0 $  für $\ n > m $. Dasselbe wird dann auch für jedes der arithmetischen Mittel $\ [mm] (a_{m+1} [/mm] +...+ [mm] a_n)/(n-m) [/mm] $ gelten. ....

...wir erwarten, dass $\ [mm] (a_{1} [/mm] +...+ [mm] a_n)/n [/mm] = [mm] (a_{1} [/mm] +...+ [mm] a_m)/n [/mm] + [mm] (a_{m+1} [/mm] +...+ [mm] a_n)/n \approx [/mm] 0 $ ist für alle hinreichend großen $\ n $, schärfer: dass $\ [mm] (a_{1} [/mm] +...+ [mm] a_n)/n \to [/mm] 0 $ strebt für $\ n [mm] \to \infty [/mm] $.

...Beweis:

Wegen $\ [mm] \lim a_n [/mm] = 0 $ gibt es zu beliebig vorgeschriebenem $\ [mm] \varepsilon [/mm] > 0 $ ein $\ m $ derart, dass für $\ k > m $ steht $\  | [mm] a_k [/mm] | < [mm] \varepsilon/2 [/mm] $ bleibt. Dann ist auch

$\ [mm] \frac{|a_{m+1}+...+a_n|}{n-m} \le \frac{|a_{m+1}|+...+|a_n|}{n-m} [/mm] < [mm] \frac{(n-m)\frac{\varepsilon}{2}}{n-m} [/mm] = [mm] \frac{\varepsilon}{2}$ [/mm]

Hier hing ich irgendwie am meisten Fest.
Undzwar: Wieso ist, unter der Voraussetzung, dass $\ | [mm] a_k [/mm] | < [mm] \varepsilon/2 [/mm] $ bleibt, das arithmetische Mittel ebenfalls $\ [mm] \frac{|a_{m+1}+...+a_n|}{n-m} [/mm] < [mm] \varepsilon/2 [/mm] $ ? Oder äquivalent: wieso strebt das arithmetische Mittel auch gegen 0 ?

Meine zweite Frage ist: Wie kommt auf der rechten Seite der Ungleichung das $\ (n-m)$ in den Zähler? Ich konnte nicht sehen, woraus das resultieren sollte.

Im weiteren Beweis werden dann nur noch weitere Abschätzungen gemacht, die ich glaube ich soweit nachvollziehen konnte.

Würde mich über Hilfe freuen,
Grüße
ChopSuey

Bezug
                        
Bezug
Cauchyscher Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Mo 28.12.2009
Autor: fred97

Wir haben doch:


               [mm] $|a_{m+1}| [/mm] , ..., [mm] |a_n| [/mm] < [mm] \varepsilon/2$ [/mm]

Also gilt für die Summe( mit n-m Summanden):

                

              [mm] $|a_{m+1}| [/mm] + ...+ [mm] |a_n| [/mm] < [mm] \varepsilon/2+\varepsilon/2+ [/mm] ...+ [mm] \varepsilon/2= (n-m)\varepsilon/2$ [/mm]

FRED

Bezug
                                
Bezug
Cauchyscher Grenzwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Mo 28.12.2009
Autor: ChopSuey

Hallo Fred,

> Wir haben doch:
>  
>
> [mm]|a_{m+1}| , ..., |a_n| < \varepsilon/2[/mm]
>  
> Also gilt für die Summe( mit n-m Summanden):
>  
>
>
> [mm]|a_{m+1}| + ...+ |a_n| < \varepsilon/2+\varepsilon/2+ ...+ \varepsilon/2= (n-m)\varepsilon/2[/mm]


...und es kann so einfach sein! Vielen Dank.

>  
> FRED

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]