matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchy-Produkt von cos^2(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Cauchy-Produkt von cos^2(x)
Cauchy-Produkt von cos^2(x) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Produkt von cos^2(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 Mi 10.12.2008
Autor: scythe

Aufgabe
Zeigen Sie mit dem Cauchy-Produkt, dass [mm] cos^2(x) = \frac{1}{2}(1+cos(2x)) \forall x \in \mathbb{R}[/mm] gilt. Es darf dabei ohne Beweis benutzt werden, dass [mm]\sum_{k=0}^{n}{2n \choose 2k} =2^{2n-1} \forall n \in \mathbb{N}[/mm] gilt.

Hallo Matheraum,

Meine Rechnung führt leider zu einem falschen Ergebnis, hoffe ihr habt einen Tipp für mich, wo der Hund begraben liegt.

[mm] cos^2(x)=cos(x)*cos(x) [/mm]
[mm] =(\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*x^{2n})*(\sum_{k=0}^{\infty}\frac{(-1)^n}{(2n)!}*x^{2n}) [/mm]
[mm] =\sum_{n=0}^{\infty}(\sum_{k=0}^{n}\frac{(-1)^k}{(2k)!}*\frac{(-1)^{n-k}}{(2*(n-k))!})*x^{2n} [/mm]
[mm] =\sum_{n=0}^{\infty}(\sum_{k=0}^{n}\frac{(-1)^n}{(2k)!*(2n-2k)!}*\frac{(2n)!}{(2n)!})*x^{2n} [/mm]
[mm] =\sum_{n=0}^{\infty}(\frac{(-1)^n}{(2n)!}*\sum_{k=0}^{n}\frac{(2n)!}{(2k)!*(2n-2k)!})*x^{2n} [/mm]
[mm] =\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*(\sum_{k=0}^{n}{2n \choose 2k})*x^{2n} [/mm]
[mm] =\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*(2^{2n-1})*x^{2n} [/mm]
[mm] =\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*2^{2n}*\frac{1}{2}*x^{2n} [/mm]
[mm] =\frac{1}{2}*\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*(2x)^{2n} [/mm]
[mm] =\frac{1}{2}*(cos(2x)) [/mm]

Vielen Dank im vorraus :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cauchy-Produkt von cos^2(x): Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Mi 10.12.2008
Autor: Marcel

Hallo,

> Zeigen Sie mit dem Cauchy-Produkt, dass [mm]cos^2(x) = \frac{1}{2}(1+cos(2x)) \forall x \in \mathbb{R}[/mm]
> gilt. Es darf dabei ohne Beweis benutzt werden, dass
> [mm]\sum_{k=0}^{n}{2n \choose 2k} =2^{2n-1} \forall n \in \mathbb{N}[/mm]
> gilt.
>  Hallo Matheraum,
>  
> Meine Rechnung führt leider zu einem falschen Ergebnis,
> hoffe ihr habt einen Tipp für mich, wo der Hund begraben
> liegt.
>  
> [mm]cos^2(x)=cos(x)*cos(x)[/mm]
>  
> [mm]=(\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*x^{2n})*(\sum_{k=0}^{\infty}\frac{(-1)^n}{(2n)!}*x^{2n})[/mm]
>  
> [mm]=\sum_{n=0}^{\infty}(\sum_{k=0}^{n}\frac{(-1)^k}{(2k)!}*\frac{(-1)^{n-k}}{(2*(n-k))!})*x^{2n}[/mm]
>  
> [mm]=\sum_{n=0}^{\infty}(\sum_{k=0}^{n}\frac{(-1)^n}{(2k)!*(2n-2k)!}*\frac{(2n)!}{(2n)!})*x^{2n}[/mm]
>  
> [mm]=\sum_{n=0}^{\infty}(\frac{(-1)^n}{(2n)!}*\sum_{k=0}^{n}\frac{(2n)!}{(2k)!*(2n-2k)!})*x^{2n}[/mm]
>  
> [mm]=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*(\sum_{k=0}^{n}{2n \choose 2k})*x^{2n}[/mm]
>  
> [mm]\red{=}\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*(2^{2n-1})*x^{2n}[/mm]
>  
> [mm]=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*2^{2n}*\frac{1}{2}*x^{2n}[/mm]
>  
> [mm]=\frac{1}{2}*\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}*(2x)^{2n}[/mm]
>  [mm]=\frac{1}{2}*(cos(2x))[/mm]
>  
> Vielen Dank im vorraus :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

der Hund liegt bei dem roten Gleichheitszeichen begraben. Du benutzt dort nämlich, dass [mm] $\sum_{k=0}^{n}{2n \choose 2k} =2^{2n-1}$ [/mm] für alle $n [mm] \in \blue{\IN_0}=\IN \overset{d}{\cup} \{0\}$ [/mm] gelten würde.

In Wahrheit gilt aber [mm] $\sum_{k=0}^{n}{2n \choose 2k} =2^{2n-1}$ [/mm] auch, wie es oben steht, für alle [mm] $\blue{n \in \IN=\{1,2,3,...\}}\,,$ [/mm] also nicht für $n=0$.

(Für $n=0$ ist [mm] $\sum_{k=0}^{n}{2n \choose 2k}={0 \choose 0}=1$, [/mm] aber [mm] $2^{2n-1}=2^{-1}=1/2 \not=1\,.$) [/mm]

Also korrekt geht es nach dem roten Gleichheitszeichen so weiter:

[mm] $$\red{=}\left\{\underbrace{\frac{(-1)^0}{(2*0)!}*\left(\sum_{k=0}^{0}{2*0 \choose 2k}*x^{2*0}\right)}_{=1}\right\}+\sum_{n=1}^{\infty}\frac{(-1)^n}{(2n)!}*\left(\sum_{k=0}^{n}{2n \choose 2k}\right)*x^{2n}$$ [/mm]
[mm] $$=1+\frac{1}{2}\cdot{}\sum_{n=1}^{\infty}\frac{(-1)^n}{(2n)!}\cdot{}(2x)^{2n}=:(\star)\,.$$ [/mm]

Schreibst Du nun noch [mm] $1=\frac{1}{2}+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}*\frac{(-1)^0}{(2*0)!}\cdot{}(2x)^{2*0}\,,$ [/mm]

so folgt

[mm] $$(\star)=\frac{1}{2}+\left(\frac{1}{2}*\frac{(-1)^0}{(2*0)!}\cdot{}(2x)^{2*0}+\frac{1}{2}\cdot{}\sum_{n=1}^{\infty}\frac{(-1)^n}{(2n)!}\cdot{}(2x)^{2n}\right)\,.$$ [/mm]

Ich denke, den Rest siehst Du ;-)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]