matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchy-Produkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Cauchy-Produkt
Cauchy-Produkt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Produkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:25 So 03.12.2006
Autor: Carlchen

Aufgabe
Man berechne das Cauchy-Produkt der Reihen

[mm]\summe_{n=0}^{\infty}\bruch{(-1)^n q^{2n+1}}{(2n+1)!}[/mm]

und

[mm]\summe_{n=0}^{\infty}\bruch{(-1)^n q^{2n}}{(2n)!}[/mm]

Hi Leute,

Also ich hab angefangen zu rechnen:

[mm] \left( \summe_{n=0}^{\infty}\bruch{(-1)^n q^{2n+1}}{(2n+1)!} \right) \cdot \left( \summe_{n=0}^{\infty}\bruch{(-1)^n q^{2n}}{(2n)!} \right) [/mm]

[mm] \Rightarrow [/mm]

[mm] \summe_{n=0}^{\infty} \left( \summe_{k=0}^{n} \bruch{(-1)^k q^{2k+1}}{(2k+1)!} \cdot \bruch{(-1)^{n-k} q^{2(n-k)}}{(2(n-k))!} \right) [/mm]

[mm] \Rightarrow [/mm]

[mm] \summe_{k=0}^{n} \bruch{(-1)^{k+n-k} \cdot q^{(2k+1)+(2n-2k)}}{(2k+1)! \cdot (2(n-k))!} [/mm]

= [mm] \summe_{k=0}^{n} \bruch{(-1)^{n} q^{2n+1}}{(2k+1)! (2(n-k))!} [/mm]

So und nun weiß ich nicht weiter. Vielleicht kann mir jemand helfen?
Würde mich freuen.

Liebe Grüße
Carlchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cauchy-Produkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 07.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]