matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenCantorfolge(?)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Cantorfolge(?)
Cantorfolge(?) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cantorfolge(?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Fr 25.01.2008
Autor: hundert

Aufgabe
Betrachten Sie die Menge C= [mm] \{x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}|a_n=0 oder 2\} [/mm]

(a) Skizzieren sie C
(b) Zeigen sie, dass die menge der häufungspunkte von C genau die Menge  C selbst ist.

Okay also zu a,  seh ich das richtig das als werte  für a=0 immer 0 rauskommt, also  zeichene ich ein kartesisches koordiantensytsem und zeihen alle punkite auf der x- achse ab 1 ein.   für  [mm] a_n [/mm] = 2 setz ich ein   [mm] \bruch{2}{3^n} [/mm] und trage die werte ebenfals ein .

zu b
) meneg er häufunspunkte ist   bei [mm] a_n [/mm] = 0  0 oder? und bei [mm] a_n= [/mm] 2 ist 2 häufungspunkt,.. wie zeig ich das jetzt genau?


lg  

        
Bezug
Cantorfolge(?): Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Fr 25.01.2008
Autor: Somebody


> Betrachten Sie die Menge C=
> [mm]\{x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}|a_n=0 oder 2\}[/mm]
>  
> (a) Skizzieren sie C
>  (b) Zeigen sie, dass die menge der häufungspunkte von C
> genau die Menge  C selbst ist.
>  Okay also zu a,  seh ich das richtig das als werte  für
> a=0 immer 0 rauskommt, also  zeichene ich ein kartesisches
> koordiantensytsem und zeihen alle punkite auf der x- achse
> ab 1 ein.   für  [mm]a_n[/mm] = 2 setz ich ein   [mm]\bruch{2}{3^n}[/mm] und
> trage die werte ebenfals ein .
>  
> zu b
>  ) meneg er häufunspunkte ist   bei [mm]a_n[/mm] = 0  0 oder? und
> bei [mm]a_n=[/mm] 2 ist 2 häufungspunkt,.. wie zeig ich das jetzt
> genau?

1. Um zu beweisen, dass die Menge aller Häufungspunkte von $C$ jedenfalls in $C$ enthalten ist, nimmst Du an, es sei Dir ein konkretes Element [mm] $x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}$ [/mm] dieser Menge $C$ gegeben. Du musst nun zeigen können, dass es zu jedem noch so kleinen [mm] $\varepsilon>0$ [/mm] ein Element von [mm] $C\backslash\{x\}$ [/mm] gibt, das von $x$ einen Abstand kleiner als [mm] $\varepsilon$ [/mm] hat.
Dazu verwendest Du ein Element von $C$, das für ein genügend grosses Anfangsstück der Reihe [mm] $\sum_{n=1}^\infty\frac{a_n}{3^n}$ [/mm] mit der Reihe von $x$ übereinstimmt, im Rest dieser Summe dann aber passend abweicht und daher von $x$ verschieden ist.

2. Um zu beweisen, dass alle Elemente von $C$ Häufungspunkte von $C$ sind, musst Du zeigen, dass es in jeder noch so kleinen [mm] $\varepsilon$-Umgebung [/mm] eines konkreten Elementes [mm] $x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}$ [/mm] von $C$ ein weiteres, von $x$ verschiedenes Element von $C$ gibt.

3. Um zu beweisen, dass es keine weiteren Häufungspunkte (ausserhalb von $C$) gibt, musst Du für eine beliebige Zahl [mm] $y\in \IR\backslash [/mm] C$ zeigen, dass es eine gewisse [mm] $\varepsilon$-Umgebung [/mm] von $y$ gibt, in der keine weiteren Elemente von $C$ liegen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]