matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeC-Vektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - C-Vektorraum
C-Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

C-Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 15.06.2009
Autor: T_sleeper

Aufgabe
(i) V ist [mm] \mathbb{R}-Vektorraum. [/mm] I.V [mm] \rightarrow [/mm] V lineare Abb. mit [mm] I^2=-Id. [/mm]
Definiert man [mm] \mathbb{C}\times V\rightarrow [/mm] V durch:
[mm] \alpha v=Re(\alpha)v+Im(\alpha)I(v) [/mm] für [mm] \alpha \in \mathbb{C} [/mm] und [mm] v\in [/mm] V, dann ist V mit dieser Skalarmultiplikation ein C-Vektorraum.

(ii) Ist W ein [mm] \mathbb{C}-Vektorraum, [/mm] so fasse W als [mm] \mathbb{R}-Vektorraum [/mm] auf. Zeige: [mm] f:W\rightarrow [/mm] W, f(w)=iw ist [mm] \mathbb{R}-linear [/mm] und erfüllt [mm] f^2=-id. [/mm]

Hallo,

bei (i) bin ich mir garnicht so sicher, was ich alles zeigen muss. Eigentlich doch nur, dass die definierte Multiplikation auch [mm] I^2=-id [/mm] erfüllt oder? Muss ich noch weitere Axiome nachweisen?

Wenn das alles wäre, warum würde das ausreichen nur das zu zeigen? Weil V alle anderen Vektorraum Axiome schon erfüllt, denn es ist bereits ein R-Vektorraum?

Und wie mache ich das mit [mm] I^2=-id. [/mm]
Ich schreibe [mm] \alpha [/mm] als x+iy und bilde [mm] (I\circ [/mm] I)(x+iy,v) oder?
Und was genau muss am Schluss da rauskommen? Also -id ist klar, also -v doch eigentlich nur oder (Muss ja ein Element aus V sein)?

Zu (ii):
Muss ich hier wirklich nur zeigen:
[mm] f(\lambda w_1+\mu w_2)=\lambda f(w_1)+\mu f(w_2) [/mm] für [mm] w_1,w_2\in [/mm] W und [mm] \lambda,\mu \in \mathbb [/mm] {R}?

Und die Eigenschaft [mm] f^2=-id [/mm] zeigt man schnell.

Gruß Sleeper

        
Bezug
C-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mo 15.06.2009
Autor: angela.h.b.


> (i) V ist [mm]\mathbb{R}-Vektorraum.[/mm] I.V [mm]\rightarrow[/mm] V lineare
> Abb. mit [mm]I^2=-Id.[/mm]
>  Definiert man [mm]\mathbb{C}\times V\rightarrow[/mm] V durch:
> [mm]\alpha v=Re(\alpha)v+Im(\alpha)I(v)[/mm] für [mm]\alpha \in \mathbb{C}[/mm]
> und [mm]v\in[/mm] V, dann ist V mit dieser Skalarmultiplikation ein
> C-Vektorraum.
>  
> (ii) Ist W ein [mm]\mathbb{C}-Vektorraum,[/mm] so fasse W als
> [mm]\mathbb{R}-Vektorraum[/mm] auf. Zeige: [mm]f:W\rightarrow[/mm] W, f(w)=iw
> ist [mm]\mathbb{R}-linear[/mm] und erfüllt [mm]f^2=-id.[/mm]
>  Hallo,
>  
> bei (i) bin ich mir garnicht so sicher, was ich alles
> zeigen muss. Eigentlich doch nur, dass die definierte
> Multiplikation auch [mm]I^2=-id[/mm] erfüllt oder?

Hallo,

???

Ich kapiere gar nicht, was Du meinst. [mm] I^2=-id [/mm] ist doch vorausgesetzt.

> Muss ich noch
> weitere Axiome nachweisen?


Auf die Gefahr hin, mich zu blamieren:

ich würde jetzt dahergehen und die VR-Axiome, die mit der Multiplikation mit Skalaren zusammenhängen, vorrechnen.


> Wenn das alles wäre, warum würde das ausreichen nur das zu
> zeigen? Weil V alle anderen Vektorraum Axiome schon
> erfüllt, denn es ist bereits ein R-Vektorraum?
>  
> Und wie mache ich das mit [mm]I^2=-id.[/mm]
>  Ich schreibe [mm]\alpha[/mm] als x+iy und bilde [mm](I\circ[/mm] I)(x+iy,v)
> oder?
>  Und was genau muss am Schluss da rauskommen? Also -id ist
> klar, also -v doch eigentlich nur oder (Muss ja ein Element
> aus V sein)?
>  
> Zu (ii):
>  Muss ich hier wirklich nur zeigen:
>  [mm]f(\lambda w_1+\mu w_2)=\lambda f(w_1)+\mu f(w_2)[/mm] für
> [mm]w_1,w_2\in[/mm] W und [mm]\lambda,\mu \in \mathbb[/mm] {R}?
>  

Ich würde das so machen.

Gruß v. Angela

> Und die Eigenschaft [mm]f^2=-id[/mm] zeigt man schnell.
>  
> Gruß Sleeper


Bezug
                
Bezug
C-Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mo 15.06.2009
Autor: T_sleeper


> ich würde jetzt dahergehen und die VR-Axiome, die mit der
> Multiplikation mit Skalaren zusammenhängen, vorrechnen.

Alle Vektorraumaxiome hängen mit Skalarmultiplikation zusammen.

Wenn ich mir mal das erste rausgreife:
[mm] \alpha(\beta v)=(\alpha\cdot \beta) [/mm] v

[mm] \alpha,\beta \in \mathbb{C},v\in [/mm] V.

Übertragen auf meine Definition:
es galt: [mm] (x+iy,v)\mapsto [/mm] xv+yI(v), wäre das dann:

für [mm] \alpha=x_1+iy_2, \beta=x_2+iy_2: [/mm]
[mm] (x_1+iy_1)\cdot (x_2+iy_2,v)=(x_1+iy_1)(x_2 v+y_2 [/mm] I(v)).
Das muss dann aber irgendwie das Gleiche sein, wie:
[mm] ((x_1+iy_1)(x_2+iy_2),v). [/mm] Aber wie komme ich da hin? Das klappt bei mir überhaupt nicht.


Bezug
                        
Bezug
C-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Mo 15.06.2009
Autor: angela.h.b.


> > ich würde jetzt dahergehen und die VR-Axiome, die mit der
> > Multiplikation mit Skalaren zusammenhängen, vorrechnen.
>  
> Alle Vektorraumaxiome hängen mit Skalarmultiplikation
> zusammen.

Hallo,

nein, die, die von der additiven Gruppe handeln, nicht.

>  
> Wenn ich mir mal das erste rausgreife:
>  [mm]\alpha(\beta v)=(\alpha\cdot \beta)[/mm] v
>  
> [mm]\alpha,\beta \in \mathbb{C},v\in[/mm] V.
>  
> Übertragen auf meine Definition:
>  es galt: [mm](x+iy,v)\mapsto[/mm] xv+yI(v), wäre das dann:
>  
> für [mm]\alpha=x_1+iy_2, \beta=x_2+iy_2:[/mm]
>  [mm](x_1+iy_1)\cdot (x_2+iy_2,v)=(x_1+iy_1)(x_2 v+y_2[/mm]
> I(v)).
>  Das muss dann aber irgendwie das Gleiche sein, wie:
>  [mm]((x_1+iy_1)(x_2+iy_2),v).[/mm] Aber wie komme ich da hin? Das
> klappt bei mir überhaupt nicht.

Was bekommst Du denn? (Ich würde es bevorzugen, daß Du rechnest und schreibst...)

Du mußt hierbei halt gut aufpassen, was Du multiplizierst: zwei Zahlen miteinander , oder Zahl und Vektor.
Vielleicht ist es übersichtlich, verschiedene Zeichen zu verwenden. Nimm doch für "Zahl mal Vektor" das Zeichen [mm] \odot. [/mm] (Komisches Zeichen für "komische" Multiplikation.),

und schreib sowohl

[mm] (\alpha\beta)\odot [/mm] v

als auch

[mm] \alpha\odot(\beta\odot [/mm] v)

ganz langsam Schritt für Schritt auf.

Gruß v. Angela


Bezug
                                
Bezug
C-Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mo 15.06.2009
Autor: T_sleeper

Ok das passt doch alles. War eben nur ein bisschen unübersichtlich. Wenn man das mit unterschiedlichen Zeichen macht, sieht man es viel schneller.

Aber nur noch mal zur Absicherung:

> > Alle Vektorraumaxiome hängen mit Skalarmultiplikation
> > zusammen.
>  
> Hallo,
>  
> nein, die, die von der additiven Gruppe handeln, nicht.

Ja gut, dass (C,+) abelsche Gruppe ist, ist klar.
Ich muss also zusätzlich noch überprüfen:
    IIa: [mm] \alpha [/mm]  * (u + v) = [mm] \alpha [/mm] * u + [mm] \alpha [/mm]  * v
    IIb: [mm] (\alpha [/mm] + [mm] \beta [/mm] ) * v = [mm] \alpha [/mm] * v + [mm] \beta [/mm]  * v,

richtig?

Na das wird noch schön viel Schreibarbeit...

Bezug
                                        
Bezug
C-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 15.06.2009
Autor: angela.h.b.


> Ok das passt doch alles. War eben nur ein bisschen
> unübersichtlich. Wenn man das mit unterschiedlichen Zeichen
> macht, sieht man es viel schneller.

Hallo,

ja, es ist erstaunlich, wie man sich mit so kleinen tricks selbst überlisten kann.

>  
> Aber nur noch mal zur Absicherung:
>  
> > > Alle Vektorraumaxiome hängen mit Skalarmultiplikation
> > > zusammen.
>  >  
> > Hallo,
>  >  
> > nein, die, die von der additiven Gruppe handeln, nicht.
>  
> Ja gut, dass (C,+) abelsche Gruppe ist, ist klar.
>  Ich muss also zusätzlich noch überprüfen:
>      IIa: [mm]\alpha[/mm]  * (u + v) = [mm]\alpha[/mm] * u + [mm]\alpha[/mm]  * v
>      IIb: [mm](\alpha[/mm] + [mm]\beta[/mm] ) * v = [mm]\alpha[/mm] * v + [mm]\beta[/mm]  * v,
>  
> richtig?

Genau.

Eigentlich ja auch noch [mm] 1\vdot [/mm] v=v.

Gruß v. Angela

Bezug
        
Bezug
C-Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mo 15.06.2009
Autor: T_sleeper

Aufgabe
(3) Nun wieder: V ein [mm] \mathbb{R}-Vektorraum [/mm] mit linearer Abb. [mm] I:V\rightarrow V,I^2=-id. [/mm] Zeige: V [mm] endlich-dimensional\Rightarrow [/mm] dimV  ist gerade.

(4) Wenn U I-invarianter Unterraum von V [mm] ist\Rightarrow [/mm] es gibt I-invarianten Unterraum U', so dass gilt: V=U [mm] \oplus [/mm] U'

Zu (3). Ich dachte mir, ich betrachte die Determinante. Dann [mm] det(J)^2=det(-id_V)=(-1)^n. [/mm]

Jetzt muss die Determinante aber gleich 1 [mm] sein\Rightarrow [/mm] n=2k.
Ich weiß allerdings nicht genau, wie ich das noch weiter begründen soll, dass [mm] det(J)^2=1 [/mm] ist. Komme ich da mit der offensichtlichen Bijektivität von I weiter?

Zu (4). Ist mir intuitiv klar, aber formal stehts noch nicht da.
Es gilt ja [mm] I(u)\subset [/mm] U [mm] \forall u\in [/mm] U. Dann ist [mm] I^2(u)=-u. [/mm] Ich weiß aber nicht genau wie ich weiter mache...
Es muss gelten: [mm] U\cap [/mm] U'=0.

Bezug
                
Bezug
C-Vektorraum: zu 3)
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 15.06.2009
Autor: angela.h.b.


> (3) Nun wieder: V ein [mm]\mathbb{R}-Vektorraum[/mm] mit linearer
> Abb. [mm]I:V\rightarrow V,I^2=-id.[/mm] Zeige: V
> [mm]endlich-dimensional\Rightarrow[/mm] dimV  ist gerade.
>  
> (4) Wenn U I-invarianter Unterraum von V [mm]ist\Rightarrow[/mm] es
> gibt I-invarianten Unterraum U', so dass gilt: V=U [mm]\oplus[/mm]
> U'
>  Zu (3). Ich dachte mir, ich betrachte die Determinante.
> Dann [mm]det(J)^2=det(-id_V)=(-1)^n.[/mm]
>  
> Jetzt muss die Determinante aber gleich 1 [mm]sein\Rightarrow[/mm]
> n=2k.
>  Ich weiß allerdings nicht genau, wie ich das noch weiter
> begründen soll, dass [mm]det(J)^2=1[/mm] ist.

Hallo,

hierzu fällt mir auf die Schnelle auch nichts ein.

Ich kenne aber das Minimalpolynom von l, und ich denke, daß Du es auch kennst.

Gruß v. Angela


> Zu (4).

Müßte ich erst noch nachdenken.



Ist mir intuitiv klar, aber formal stehts noch

> nicht da.
>  Es gilt ja [mm]I(u)\subset[/mm] U [mm]\forall u\in[/mm] U. Dann ist
> [mm]I^2(u)=-u.[/mm] Ich weiß aber nicht genau wie ich weiter
> mache...
>  Es muss gelten: [mm]U\cap[/mm] U'=0.  


Bezug
                        
Bezug
C-Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 15.06.2009
Autor: T_sleeper


> Ich kenne aber das Minimalpolynom von l, und ich denke, daß
> Du es auch kennst.
>  
> Gruß v. Angela
>  

Ja kenne ich. Ich denke ich habe (3) jetzt auch.
Aber mal eine allgemeine Frage.
Enthält das Minimalpolynom immer alle Eigenwerte? Anders ausgedrückt: Wenn ich das Minimalpolynom gleich 0 setze und nach [mm] \lambda [/mm] auflöse, erhalte ich dann alle Eigenwerte? Und kann ich daraus dann schon Rückschlüsse auf ihre algebraische Vielfachheit ziehen?
Wenn ichs mal beispielhaft erkläre: Minimalpolynom [mm] m=X^2-3. [/mm]
Dann X=+/- [mm] \sqrt{3}. [/mm] Wären das auch alle Eigenwerte? Und wenn nun [mm] X=\sqrt{3} [/mm] die Vielfachheit s hat, hat [mm] X=-\sqrt{3} [/mm] auch die Vielfachheit s?

Bezug
                                
Bezug
C-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mo 15.06.2009
Autor: angela.h.b.


>  Enthält das Minimalpolynom immer alle Eigenwerte?

Hallo,

ja, so ist es.


> Anders
> ausgedrückt: Wenn ich das Minimalpolynom gleich 0 setze und
> nach [mm]\lambda[/mm] auflöse, erhalte ich dann alle Eigenwerte?

Ja.


>  Und
> kann ich daraus dann schon Rückschlüsse auf ihre
> algebraische Vielfachheit ziehen?

Nein.

> Wenn ichs mal beispielhaft erkläre: Minimalpolynom
> [mm]m=X^2-3.[/mm]
>  Dann X=+/- [mm]\sqrt{3}.[/mm] Wären das auch alle Eigenwerte?

Ja.


> Und
> wenn nun [mm]X=\sqrt{3}[/mm] die Vielfachheit s hat, hat [mm]X=-\sqrt{3}[/mm]
> auch die Vielfachheit s?

Nein, nicht unbedingt.

Gruß v. Angela


Bezug
                
Bezug
C-Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Di 16.06.2009
Autor: angela.h.b.


> (4) Wenn U I-invarianter Unterraum von V [mm]ist\Rightarrow[/mm] es
> gibt I-invarianten Unterraum U', so dass gilt: V=U [mm]\oplus[/mm]
> U'

> Zu (4). Ist mir intuitiv klar,

Hallo,

echt? Wieso? Was hast Du Dir dazu überlegt/vorgestllt?
Mir fehlt hier leider völlig die Intuition.

> aber formal stehts noch
> nicht da.
>  Es gilt ja [mm]I(u)\subset[/mm] U [mm]\forall u\in[/mm] U. Dann ist
> [mm]I^2(u)=-u.[/mm] Ich weiß aber nicht genau wie ich weiter
> mache...
>  Es muss gelten: [mm]U\cap[/mm] U'=0.  

Eine gewisse Lebenserfahrung sagt mir, daß man für diesen Aufgabenteil wohl vorhergehende irgendwie benötigt...

Ich habe mir jetzt überlegt, daß  f über [mm] \IC [/mm] zu einer Diagonalmatrix [mm] \pmat{iE_n&0\\0&-iE_n} [/mm] ähnlich ist.

Ich hab's nicht bis zum bitteren Ende überlegt, aber hier würde ich weiterdenken. Teil 2) sieht ja auch so aus, als würde er verflixt gut passen.

Gruß v. Angela


Bezug
                
Bezug
C-Vektorraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:02 Di 16.06.2009
Autor: raubkaetzchen

Aufgabe
Sei w: V x V -> [mm] \IR [/mm] eine schiefsymmetrische Bilinearform, die nicht ausgeartet ist.
Zeigen Sie, dass für alle v,u [mm] \in [/mm] V gilt : w(v,u)=w(J(v),J(u))

Hallo, ich habe eine Frage zu dieser Aufgab.

Da es hier auch um eine komplexe Struktur auf einem [mm] \IR [/mm] -VR geht, habe ich meine Frage hierher geschrieben, ich hoffe das geht in Ordnung.

Dieses J steht für obiges I, d.h. J [mm] \in [/mm] End(V) mit [mm] J^2=-Id_V. [/mm]


Kann mir jemand sagen, welcher Ansatz hier sinnvoll ist?

Ich konnte zeigen, dass [mm] \forall [/mm] v,u [mm] \in [/mm] V: [mm] w(v,u)=w(J^2(v),J^2(u)) [/mm] aber irgendwie bringt mich das nicht weiter.

Danke

Bezug
                        
Bezug
C-Vektorraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 18.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]