Bunter Beweismethodenmix < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:00 Di 14.10.2008 | Autor: | Teufel |
Aufgabe | 1. Es seien A, B und C Mengen. Zeige, dass $A [mm] \cap [/mm] (B [mm] \cup [/mm] C)=(A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C)$.
2. Es seien X, Y und Z Mengen und f: X->Y und g: Y-> Z Abbildungen. Zeige:
Ist g injektiv so gilt: f injektiv [mm] \gdw [/mm] f [mm] \circ [/mm] g injektiv.
3. Es seien X, Y und Z Mengen mit X [mm] \subset [/mm] Y. Zeige direkt, durch Widerspruch und durch Beweis des logisch Transponierten folgende Behauptung:
$Y [mm] \subset [/mm] Z [mm] \Rightarrow [/mm] X [mm] \subset [/mm] Z$ |
Hi!
Ich probier gerade mal (nur so zum Spaß) ein paar Uniaufgaben aus. Habe nur diverse Analysisskripts in PDF-Form als Grundlage, also keine eigenen Mitschriften oder sowas.
(Quelle der Aufgaben: www.math-stat.unibe.ch/lenya/math/live/vorlesungen/grundprogramm/ss07/analysis2-ss07/skriptA1_colour.pdf)
1.)
Habe nur öfter mal gelesen, wie man sowas grob angeht.
$(x [mm] \in A)\wedge((x \in B)\vee(x \in [/mm] C))=((x [mm] \in A)\wedge(x \in B))\vee((x \in A)\wedge(x \in [/mm] C))$
Aber wie verknüpft man das jetzt richtig? Also, dass $(x [mm] \in A)\wedge((x \in B)\vee(x \in [/mm] C))$ eben $A [mm] \cap [/mm] (B [mm] \cup [/mm] C)=(A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C)$ entspricht z.B.
Kann man da einfach sowas schreiben wie "Ich nehme ein beliebiges x aus den Mengen und für das gilt dann..."? Oder wie geht das richtig?
2.)
Zuerst mal eine Frage: Ich lese immer, dass für Injektivität bei einer Funktion f gilt: [mm] $f(x_1)=f(x_2)\Rightarrow x_1=x_2$
[/mm]
Aber könnte man nicht sogar so weit gehen zu sagen: Injektivität gilt, wenn [mm] $f(x_1)=f(x_2)\gdw x_1=x_2$ (\forall x_{1;2} \in [/mm] X jeweils)?
Denn da es sich bei f um eine Funktion handelt, kann man ja auch von [mm] x_1=x_2 [/mm] auf [mm] f(x_1) [/mm] auf [mm] f(x_2) [/mm] schließen. Wieso geht man die Implikation nur in eine Richtung?
Zur Aufgabe:
[mm] $\text{g injektiv} \gdw (g(y_1)=g(y_2) \Rightarrow y_1=y_2)$
[/mm]
So, jetzt müsste ich doch einerseits zeigen, dass, wenn f injektiv, dann ist auch g(f(x) injektiv und auch umgedreht.
[mm] $\text{f injektiv} \gdw (f(x_1)=f(x_2) \Rightarrow x_1=x_2)$
[/mm]
Wenn ich das jetzt zusammen mit der Voraussetzung für g verwerte, erhalte ich ja [mm] g(f(x_1))=g(f(x_2)) \Rightarrow f(x_1)=f(x_2) \Rightarrow x_1=x_2. [/mm] Damit wäre das in eine Richtung gezeigt (nehme ich zumindest an).
Oder ist es hier nicht so, dass man zwingend beide Richtungen zeigen muss? Wäre da über Aufklärung dankbar!
3.)
Erstmal zu meinen "Ersetzungen":
a [mm] \gdw [/mm] (x [mm] \in [/mm] X)
b [mm] \gdw [/mm] (x [mm] \in [/mm] Y)
c [mm] \gdw [/mm] (x [mm] \in [/mm] Z)
So, laut Aufgabe gilt ja nun noch a [mm] \Rightarrow [/mm] b.
Direkt:
Man kann ja wieder die Mengen da in diese "Aussagegestalt" umschreiben (Problem wie bei 1.)).
Die linke Seite würde eben b [mm] \Rightarrow [/mm] c entsprechen. Zusätzlich gilt ja eben noch a [mm] \Rightarrow [/mm] b.
Damit könnte man die linke Seite als $((a [mm] \Rightarrow b)\wedge [/mm] (b [mm] \Rightarrow [/mm] c))$ schreiben, was dann nach Kettenschluss (a [mm] \Rightarrow [/mm] c) wäre, wonach dann auch X [mm] \subset [/mm] Z gelten würde.
Indirekt:
Hier soll ich dann wohl von a (impliziert nicht) c (ist ein durchgestrichener Implikationspfeil zulässig?) ausgehen.
Also umgeschrieben: a [mm] \Rightarrow \neg [/mm] c (würde ich jetzt behaupten).
Insgesamt würde dann gelten:
$(a [mm] \Rightarrow b)\wedge(a \Rightarrow \neg [/mm] c)$
[mm] $\gdw (\neg [/mm] a [mm] \vee b)\wedge(\neg [/mm] a [mm] \vee [/mm] c)$
[mm] $\gdw ((\neg [/mm] a [mm] \vee b)\wedge \neg [/mm] a) [mm] \vee ((\neg [/mm] a [mm] \vee b)\wedge [/mm] c)$
... [mm] (\neg [/mm] a verschluckt das meiste)
[mm] $\gdw \neg [/mm] a [mm] \vee [/mm] (b [mm] \wedge [/mm] c)$
[mm] $\gdw [/mm] a [mm] \Rightarrow [/mm] (b [mm] \wedge [/mm] c)$
Nun impliziert laut Annahme a aber nicht c. Widerspruch. Richtig so?
Logisch transponiert:
Da soll ich dann wohl
[mm] $\neg(a \Rightarrow c)\Rightarrow \neg(b\Rightarrow [/mm] c)$ zeigen.
Oder wieder umgeschrieben: $(a [mm] \wedge \neg c)\Rightarrow [/mm] (b [mm] \wedge \neg [/mm] c)$, unter der Voraussetzung $a [mm] \Rightarrow [/mm] b$. Nun kann man die linke Seite mit $a [mm] \Rightarrow [/mm] b$ und-verknüpfen (es erscheint mir logisch, aber muss man da immer noch etwas zu schreiben, wenn man das macht?).
$(a [mm] \wedge \neg c)\wedge(a \Rightarrow [/mm] b)$
...
[mm] $\gdw [/mm] a [mm] \wedge \neg [/mm] c [mm] \wedge [/mm] b$
[mm] $\gdw [/mm] b [mm] \wedge \neg [/mm] c$
(weil a ja zu b führt)
[mm] \Box
[/mm]
Na ja, das war es erstmal, wäre froh, wenn jemand drüber gucken und alle formalen und logischen Fehler aufzeigen könnte.
Das mit der anderen Schreibweise würde ich spontan jetzt auch mit Äquivalenzpfeilen machen.
Teufel
|
|
|
|
Hallo Teufel!
> 1. Es seien A, B und C Mengen. Zeige, dass [mm]A \cap (B \cup C)=(A \cap B) \cup (A \cap C)[/mm].
>
> 2. Es seien X, Y und Z Mengen und f: X->Y und g: Y-> Z
> Abbildungen. Zeige:
> Ist g injektiv so gilt: f injektiv [mm]\gdw[/mm] f [mm]\circ[/mm] g
> injektiv.
>
> 3. Es seien X, Y und Z Mengen mit X [mm]\subset[/mm] Y. Zeige
> direkt, durch Widerspruch und durch Beweis des logisch
> Transponierten folgende Behauptung:
> [mm]Y \subset Z \Rightarrow X \subset Z[/mm]
> Hi!
>
> Ich probier gerade mal (nur so zum Spaß) ein paar
> Uniaufgaben aus. Habe nur diverse Analysisskripts in
> PDF-Form als Grundlage, also keine eigenen Mitschriften
> oder sowas.
> (Quelle der Aufgaben:
> www.math-stat.unibe.ch/lenya/math/live/vorlesungen/grundprogramm/ss07/analysis2-ss07/skriptA1_colour.pdf)
>
> 1.)
> Habe nur öfter mal gelesen, wie man sowas grob angeht.
>
> [mm](x \in A)\wedge((x \in B)\vee(x \in C))=((x \in A)\wedge(x \in B))\vee((x \in A)\wedge(x \in C))[/mm]
>
> Aber wie verknüpft man das jetzt richtig? Also, dass [mm](x \in A)\wedge((x \in B)\vee(x \in C))[/mm]
> eben [mm]A \cap (B \cup C)=(A \cap B) \cup (A \cap C)[/mm]
> entspricht z.B.
>
> Kann man da einfach sowas schreiben wie "Ich nehme ein
> beliebiges x aus den Mengen und für das gilt dann..."? Oder
> wie geht das richtig?
Also ordentlich schreibt man so etwas folgendermaßen auf:
[mm] $x\in [/mm] A [mm] \cap [/mm] (B [mm] \cup C)\gdw x\in A\wedge x\in (B\cup C)\gdw (x\in A)\wedge (x\in B\vee x\in C)\gdw (x\in A\wedge x\in [/mm] B) [mm] \vee (x\in A\wedge x\in C)\gdw (x\in A\cap B)\vee (x\in A\cap C)\gdw x\in (A\cap B)\cup(A\cap [/mm] C)$
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:32 Di 14.10.2008 | Autor: | pelzig |
> 2. Es seien X, Y und Z Mengen und f: X->Y und g: Y-> Z
> Abbildungen. Zeige:
> Ist g injektiv so gilt: f injektiv [mm]\gdw[/mm] f [mm]\circ[/mm] g
> injektiv.
> 2.) Zuerst mal eine Frage: Ich lese immer, dass für
> Injektivität bei einer Funktion f gilt:
> [mm]f(x_1)=f(x_2)\Rightarrow x_1=x_2[/mm]
> Aber könnte man nicht
> sogar so weit gehen zu sagen: Injektivität gilt, wenn
> [mm]f(x_1)=f(x_2)\gdw x_1=x_2[/mm] [mm](\forall x_{1;2} \in[/mm] X jeweils)?
>
> Denn da es sich bei f um eine Funktion handelt, kann man ja
> auch von [mm]x_1=x_2[/mm] auf [mm]f(x_1)[/mm] auf [mm]f(x_2)[/mm] schließen. Wieso
> geht man die Implikation nur in eine Richtung?
Aus ästhetischen Gründen. Zum einen macht man seine Voraussetzungen immer so schwach wie möglich und zum anderen wird so ganz klar deutlich welche, Implikation die entscheidende ist.
> Zur Aufgabe:
> [mm]\text{g injektiv} \gdw (g(y_1)=g(y_2) \Rightarrow y_1=y_2)[/mm]
>
> So, jetzt müsste ich doch einerseits zeigen, dass, wenn f
> injektiv, dann ist auch g(f(x) injektiv und auch
> umgedreht.
Die Funktion heißt [mm] $g\circ [/mm] f$. $g(f(x))$, wie du geschrieben hast, ist keine Funktion, sondern ein Element aus Z.
> [mm]\text{f injektiv} \gdw (f(x_1)=f(x_2) \Rightarrow x_1=x_2)[/mm]
>
> Wenn ich das jetzt zusammen mit der Voraussetzung für g
> verwerte, erhalte ich ja [mm]g(f(x_1))=g(f(x_2)) \Rightarrow f(x_1)=f(x_2) \Rightarrow x_1=x_2.[/mm]
> Damit wäre das in eine Richtung gezeigt (nehme ich
> zumindest an).
Richtig. Du hast die Richtung [mm] $\Rightarrow$ [/mm] gezeigt.
> Oder ist es hier nicht so, dass man zwingend beide
> Richtungen zeigen muss? Wäre da über Aufklärung dankbar!
Ja du musst noch zeigen: "sind $g$ und [mm] $g\circ [/mm] f$ injektiv, dann ist $f$ injektiv".
Gruß, Robert
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:12 Di 14.10.2008 | Autor: | Teufel |
Hi!
Danke für die Antworten erstmal. :)
Ja, hast natürlich recht!
Ok, nun zur anderen Richtung:
i) $g [mm] \circ [/mm] f [mm] \text{ injektiv} \Rightarrow (g(f(x_1))=g(f(x_2))\Rightarrow x_1=x_2$
[/mm]
ii) $g [mm] \text{ injektiv} \Rightarrow g^{-1} \text{ injektiv}$ [/mm] (was noch zu zeigen wäre)
Aus ii) folgt dann:
[mm] g^{-1}(z_1)=g^{-1}(z_2)\Rightarrow z_1=z_2
[/mm]
[mm] f(x_1)=f(x_2)\gdw g^{-1}(g(f(x_1)))=g^{-1}(g(f(x_2)))\overbrave{\Rightarrow}^{i)} g(f(x_1))=g(f(x_2))\Rightarrow x_1=x_2
[/mm]
Wäre das korrekt so?
Damit wäre dann die andere Richtung und damit die Äquivalenz gezeigt.
Nur leider weiß ich nicht, wie ich das mit der Umkehrfunktion zeigen könnte.
"Anschaulich" ist mir das klar, nur ein formaler Beweis will mir nicht einfallen.
Teufel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:29 Di 14.10.2008 | Autor: | pelzig |
> ii) [mm]g \text{ injektiv} \Rightarrow g^{-1} \text{ injektiv}[/mm]
> (was noch zu zeigen wäre)
Das ist leider total falsch. [mm] $g^{-1}$ [/mm] existiert nur, falls $g$ auch noch surjektiv ist, und das ist i.A. nicht so. Du brauchst die Umkehrfunktion auch gar nicht.
Gruß, Robert
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:44 Di 14.10.2008 | Autor: | Teufel |
Hm ok, also muss ich mir aus
i) [mm] g(f(x_1))=g(f(x_2))\Rightarrow x_1=x_2 [/mm] und
ii) [mm] g(y_1)=g(y_2)\Rightarrow y_1=y_2
[/mm]
etwas zusammenbasteln...
Wenn ich in ii) [mm] y_{1;2}=f(x_{1;2}) [/mm] einsetze, komme ich auf [mm] g(f(x_1))=g(f(x_2))\Rightarrow f(x_1)=f(x_2).
[/mm]
Nach i) gilt außerdem [mm] g(f(x_1))=g(f(x_2))\Rightarrow x_1=x_2.
[/mm]
Jetzt führt [mm] g(f(x_1))=g(f(x_2)) [/mm] also zu 2 Aussagen. Müssen diese zwangsweise äquivalent sein? Wenn ja, dann wäre die Sache ja schon gegessen, da ja bei der Äquivalenz dann inbesondere die Implikation gilt, die ich zeigen wollte.
Edit: Die Wahrheitstabelle sagt mir nein. Leider weiß ich dann nicht, wie ich das zu handhaben habe, wenn eine Aussage 2 andere Aussagen impliziert.
Teufel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:14 Mi 15.10.2008 | Autor: | Blech |
Ist doch eigentlich sehr einfach (d.h. keine Tricks oder großen logischen Überlegungen o.ä.):
$f(x)=f(y)\ [mm] \underset{\text{klar}}{\Rightarrow}\ [/mm] g(f(x))=g(f(y))\ [mm] \underset{g\circ f\ \text{injektiv}}{\Rightarrow}\ [/mm] x=y$
oder hab ich hier zu später Stunde was übersehen? =)
ciao
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 05:59 Mi 15.10.2008 | Autor: | Teufel |
Hi!
Hm ja, da würde natürlich gehen, wenn man hier den Äquivalenzpfeil hätte, also [mm] g(f(x))=g(f(y))\gdw [/mm] f(x)=f(y). Hier bräuchte man dann also wohl... aber stimmt natürlich. Das Einfachste wieder übersehen. War wohl zu spät für mich.
Ok, danke! Bleibt nur noch 3. :)
Teufel
|
|
|
|