matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Bruchterme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Bruchterme
Bruchterme < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchterme: berechnen und vereinfachen
Status: (Frage) beantwortet Status 
Datum: 22:36 Sa 01.10.2011
Autor: Kenpachi.zaraki

Aufgabe
Berechnen und vereinfachen Sie!

[mm] \bruch{3 + \bruch{3}{x+2}}{3 - \bruch{3}{x+2}} [/mm]

Ergebnis laut Lösungsblätter: [mm] \bruch{x+3}{x+1} [/mm]

Mein Ergebnis: -1

Rechne ich falsch, oder stimmt das Ergebnis vom Lösungsblatt nicht?


[mm] \bruch{3 + \bruch{3}{x+2}}{3 - \bruch{3}{x+2}} [/mm]

= [mm] \bruch{\bruch{3(x+2)}{1(x+2)}+ \bruch{3}{x+2}} {\bruch{3(x+2)}{1(x+2)} - \bruch{3}{x+2}} [/mm]

= [mm] \bruch{\bruch{3(x+2)+3}{(x+2)}}{\bruch{3(x+2)-3}{(x+2)}} [/mm]

= [mm] \bruch{3(x+2)+3}{x+2} [/mm] * [mm] \bruch{x+2}{3(x+2)-3} [/mm]

= [mm] \bruch{3(x+2)+3(x+2)}{(x+2)3(x+2)-3} [/mm]   | hier kürze ich 3(x+2)

= [mm] \bruch{3(x+2}{-3(x+2} [/mm]         | hier kürze ich (x+2)

= [mm] \bruch{3}{-3} [/mm] = - 1

        
Bezug
Bruchterme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Sa 01.10.2011
Autor: abakus


> Berechnen und vereinfachen Sie!
>  
> [mm]\bruch{3 + \bruch{3}{x+2}}{3 - \bruch{3}{x+2}}[/mm]
>  Ergebnis
> laut Lösungsblätter: [mm]\bruch{x+3}{x+1}[/mm]
>  
> Mein Ergebnis: -1
>
> Rechne ich falsch, oder stimmt das Ergebnis vom
> Lösungsblatt nicht?
>  
>
> [mm]\bruch{3 + \bruch{3}{x+2}}{3 - \bruch{3}{x+2}}[/mm]
>
> = [mm]\bruch{\bruch{3(x+2)}{1(x+2)}+ \bruch{3}{x+2}} {\bruch{3(x+2)}{1(x+2)} - \bruch{3}{x+2}}[/mm]
>  
> = [mm]\bruch{\bruch{3(x+2)+3}{(x+2)}}{\bruch{3(x+2)-3}{(x+2)}}[/mm]
>  
> = [mm]\bruch{3(x+2)+3}{x+2}[/mm] * [mm]\bruch{x+2}{3(x+2)-3}[/mm]
>  
> = [mm]\bruch{3(x+2)+3(x+2)}{(x+2)3(x+2)-3}[/mm]   | hier kürze ich
> 3(x+2)

Du hast hier ein paar wesentliche Klammern vergessen. Nach dem Multiplizieren der Brüche entsteht
[mm]\bruch{(3(x+2)+3)(x+2)}{(x+2)(3(x+2)-3)}[/mm] , wobei der Faktor (x+2) im Zähler und im Nenner steht und gekürzt werden kann.
Übrig bleibt der Bruch
[mm]\bruch{(3(x+2)+3)}{(3(x+2)-3)}=\bruch{(3(x+2+1)}{(3(x+2-1))}[/mm]
Gruß Abakus

>  
> = [mm]\bruch{3(x+2}{-3(x+2}[/mm]         | hier kürze ich (x+2)
>  
> = [mm]\bruch{3}{-3}[/mm] = - 1  


Bezug
                
Bezug
Bruchterme: danke :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 So 02.10.2011
Autor: Kenpachi.zaraki

[mm]\bruch{3 + \bruch{3}{x+2}}{3 - \bruch{3}{x+2}}[/mm]

= [mm]\bruch{\bruch{3(x+2)}{1(x+2)}+ \bruch{3}{x+2}} {\bruch{3(x+2)}{1(x+2)} - \bruch{3}{x+2}}[/mm]
  
= [mm]\bruch{\bruch{3(x+2)+3}{(x+2)}}{\bruch{3(x+2)-3}{(x+2)}}[/mm]

= [mm]\bruch{(3(x+2)+3)(x+2)}{(x+2)(3(x+2)-3)}[/mm]     ok, den Faktor (x+2) kürzen

= [mm]\bruch{3(x+2)+3}{3(x+2)-3}[/mm]  hier nicht durch Summen teilen, sondern ausmultiplizieren

= [mm] \bruch{3x+6+3}{3x+6-3} [/mm] mit 3 kürzen

= [mm] \bruch{x+2+1}{x+2-1} [/mm]  

= [mm] \bruch{x+3}{x+1} [/mm]  




Bezug
        
Bezug
Bruchterme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Sa 01.10.2011
Autor: TheBozz-mismo

Hallo
> Berechnen und vereinfachen Sie!
>  
> [mm]\bruch{3 + \bruch{3}{x+2}}{3 - \bruch{3}{x+2}}[/mm]
>  Ergebnis
> laut Lösungsblätter: [mm]\bruch{x+3}{x+1}[/mm]
>  
> Mein Ergebnis: -1
>
> Rechne ich falsch, oder stimmt das Ergebnis vom
> Lösungsblatt nicht?
>  
>
> [mm]\bruch{3 + \bruch{3}{x+2}}{3 - \bruch{3}{x+2}}[/mm]
>
> = [mm]\bruch{\bruch{3(x+2)}{1(x+2)}+ \bruch{3}{x+2}} {\bruch{3(x+2)}{1(x+2)} - \bruch{3}{x+2}}[/mm]
>  
> = [mm]\bruch{\bruch{3(x+2)+3}{(x+2)}}{\bruch{3(x+2)-3}{(x+2)}}[/mm]
>  
> = [mm]\bruch{3(x+2)+3}{x+2}[/mm] * [mm]\bruch{x+2}{3(x+2)-3}[/mm]
>  
> = [mm]\bruch{3(x+2)+3(x+2)}{(x+2)3(x+2)-3}[/mm]   | hier kürze ich
> 3(x+2)

Hier machst du ein Kardinalfehler: "Summen und Differenzen kürzen nur die Dummen" hat mein Mathelehrer immer gesagt.

Das wollte ich noch mal extra erwähnen.

Gruß
TheBozz-mismo

>  
> = [mm]\bruch{3(x+2}{-3(x+2}[/mm]         | hier kürze ich (x+2)
>  
> = [mm]\bruch{3}{-3}[/mm] = - 1  


Bezug
        
Bezug
Bruchterme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:12 So 02.10.2011
Autor: Kenpachi.zaraki

Aufgabe
Berechnen und vereinfachen Sie!

[mm] \bruch{x^2-9}{2} [/mm] : [mm] \left(\bruch{x+3}{x-3} - \bruch{x-3}{x+3}\right) [/mm]

Meine Lösung passt wieder nicht zu der vom Lösungsblatt.

[mm] =\bruch{x^2-9}{2} [/mm] : [mm] \left(\bruch{x+3}{x-3} - \bruch{x-3}{x+3}\right) [/mm]

[mm] =\bruch{x^2-9}{2} [/mm] : [mm] \bruch{(x+3)(x+3)}{(x-3)(x+3)} [/mm] - [mm] \bruch{(x-3)(x-3)}{(x+3)(x-3)} [/mm]

[mm] =\bruch{x^2-9}{2} [/mm] : [mm] \bruch{(x+3)(x+3)- (x-3)(x-3)}{(x+3)(x-3)} [/mm]

[mm] =\bruch{x^2-9}{2} [/mm] : [mm] \bruch{(x^2+6x+9) - (x^2-6x+9)}{(x+3)(x-3)} [/mm]

[mm] =\bruch{x^2-9}{2} [/mm] : [mm] \bruch{x^2+6x+9 + (-x^2+6x-9)}{(x+3)(x-3)} [/mm]

[mm] =\bruch{x^2-9}{2} [/mm] : [mm] \bruch{12x}{(x+3)(x-3)} [/mm]

[mm] =\bruch{(x^2-9)*((x-3)(x+3))}{2*12x} [/mm]

[mm] =\bruch{(x^2-9)*(x^2-9)}{24x} [/mm]

[mm] =\bruch{(x^2-9)^2}{24x} [/mm]

Bezug
                
Bezug
Bruchterme: Antwort
Status: (Antwort) fertig Status 
Datum: 03:14 So 02.10.2011
Autor: kushkush

Hallo,

deine Rechnung ist richtig!






Gruss
kushkush

Bezug
                        
Bezug
Bruchterme: danke :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 So 02.10.2011
Autor: Kenpachi.zaraki

...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]