matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenBruchrechnung komplexer Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Bruchrechnung komplexer Zahlen
Bruchrechnung komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchrechnung komplexer Zahlen: Grober Rechenweg
Status: (Frage) beantwortet Status 
Datum: 17:28 So 17.05.2009
Autor: khensai

Aufgabe
(1/(3+2i))+(2/(2+2i))

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,

ich sitze hier grad schon seit ca ne halbe Stunde und zerbrech mir den Kopf,wie mein Matheprogramm Brüche mit komplexen Zahlen rechnet. Leider gibt es in dem Programm keinen Knopf a la "Rechenweg",sondern es wird nur das Ergebnis ausgespuckt.

Kann mir jemand den groben Rechenweg erklären? Ich hab nicht mal einen Ansatz wie man es rechnen könnte. Nur,das man beide Zahlen auf den gleichen Nenner bringen muss,aber wie und wonach richtet sich das?

Ich wäre für jede Hilfe dankbar!

        
Bezug
Bruchrechnung komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 So 17.05.2009
Autor: fencheltee


> (1/(3+2i))+(2/(2+2i))
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo Leute,
>  
> ich sitze hier grad schon seit ca ne halbe Stunde und
> zerbrech mir den Kopf,wie mein Matheprogramm Brüche mit
> komplexen Zahlen rechnet. Leider gibt es in dem Programm
> keinen Knopf a la "Rechenweg",sondern es wird nur das
> Ergebnis ausgespuckt.
>  
> Kann mir jemand den groben Rechenweg erklären? Ich hab
> nicht mal einen Ansatz wie man es rechnen könnte. Nur,das
> man beide Zahlen auf den gleichen Nenner bringen muss,aber
> wie und wonach richtet sich das?

du musst jeden bruch einzeln komplex konjugiert erweitern (man hat dann nur noch reelle zahlen im nenner und kann dann entsprechend erweitern um den 2. bruch zu addieren..)
bsp:
[mm] \bruch{1}{2+i}=\bruch{1}{2+i}=\bruch{1}{2+i}*\red{\bruch{2-i}{2-i}}=\bruch{1*2-1*i}{2^2-i^2}=\bruch{2-i}{5} [/mm] (zähler und nenner nun beliebig erweiterbar)

danach kannst du imaginär und realteil auch getrennt schreiben ;)

>  
> Ich wäre für jede Hilfe dankbar!


Bezug
                
Bezug
Bruchrechnung komplexer Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 So 17.05.2009
Autor: khensai

Vielen Dank,das hat mir sehr geholfen! Hat sich somit erledigt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]