Bruchrechen-Problem < Klassen 5-7 < Schule < Mathe < Vorhilfe
|
Aufgabe | [mm] \summe_{i=1}^{n}\bruch{1}{i(i+1)}=\bruch{n}{n+1}
[/mm]
[mm] \summe_{i=1}^{n+1}\bruch{1}{i(i+1)}=\bruch{n+1}{(n+1)+1} [/mm] |
Hallo,
ich habe gerade ein Problem mit obiger Aufgabe. Ich soll sie durch vollständige Induktion beweisen, komme da aber zu keinem vernünftigen Ergebnis.
Man kann das Summenzeichen ja aufteilen in
[mm] \summe_{i=1}^{n}\bruch{1}{i(i+1)} +\bruch{1}{(n+1)((n+1)+1}, [/mm] das ist dann laut Induktionsvoraussetzung = [mm] \bruch{n}{n+1}+\bruch{1}{(n+1)((n+1)+1)}
[/mm]
Wie kann ich jetzt diesen Bruch so umformen, dass ich da irgendwann [mm] =\bruch{n+1}{(n+1)+1} [/mm] stehen habe? Ich bin zu allen möglichen komischen Ergebnissen gekommen, häufig war bei mir der Bruch irgendwann =1.
Eine Zwischenstufe, die sehr vernünftig aussah, wo ich aber auch nicht weiterkam, war = [mm] \bruch{n}{n+1} +\bruch{1}{(n+1)*(n+1)+(n+1)}
[/mm]
Kann mir jemand helfen? Danke :)
mit verzweifelten Grüßen,
Lisa
P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> [mm]\summe_{i=1}^{n}\bruch{1}{i(i+1)}=\bruch{n}{n+1}[/mm]
>
> [mm]\summe_{i=1}^{n+1}\bruch{1}{i(i+1)}=\bruch{n+1}{(n+1)+1}[/mm]
> Hallo,
> ich habe gerade ein Problem mit obiger Aufgabe. Ich soll
> sie durch vollständige Induktion beweisen, komme da aber zu
> keinem vernünftigen Ergebnis.
>
> Man kann das Summenzeichen ja aufteilen in
> [mm]\summe_{i=1}^{n}\bruch{1}{i(i+1)} +\bruch{1}{(n+1)((n+1)+1},[/mm]
> das ist dann laut Induktionsvoraussetzung =
> [mm]\bruch{n}{n+1}+\bruch{1}{(n+1)((n+1)+1)}[/mm]
Hallo,
.
den Bruch [mm] \bruch{1}{(n+1)((n+1)+1} [/mm] können wir uns zum rechnen ja etwas genießbarer zubereiten, denn [mm] \bruch{1}{(n+1)((n+1)+1}=\bruch{1}{(n+1)((n+2)}
[/mm]
Du hast dann also
[mm] \bruch{n}{n+1}+\bruch{1}{(n+1)((n+1)+1)}=\bruch{n}{n+1}+\bruch{1}{(n+1)((n+2))}= [/mm] (jetzt ist der Hauptnenner dran)
[mm] =\bruch{n(n+2)}{n+1}+\bruch{1}{(n+1)((n+2))}=\bruch{ n^2+2n + 1}{n(n+1)((n+2))} [/mm] = (jetzt oben binomische Formel und dann weiter.
Gruß v. Angela
|
|
|
|
|
Hallo Angela,
erst einmal danke für deine Begrüßung und danke für deine Mühe!
Ich habe nun aber doch noch ein paar Fragen zu deiner Antwort.
Wie ich zu [mm] \bruch{n}{n+1}+\bruch{1}{(n+1)((n+2))} [/mm] komme, ist mir klar.
Aber wie kommst du dann auf [mm] \bruch{n(n+2)}{n+1}+\bruch{1}{(n+1)((n+2))} [/mm] ? Darf man in einer Summe einfach einen Bruch mit etwas (hier n+2) multiplizieren, ohne das im Zähler und/oder beim anderen Bruch zu tun?
Und wie bist du dann auf [mm] \bruch{ n^2+2n + 1}{n(n+1)((n+2))} [/mm] gekommen?
Die Zähler hast du miteinander addiert und die Nenner multipliziert?
Und, das dritte Problem: Ich komme dann immer noch nicht weiter.
Ich bin jetzt schon bei [mm] \bruch{ (n+1)^2}{(n+1)^2+n(n^2+2n)-1} [/mm] bzw [mm] \bruch{ (n+1)^2}{n^3+3n+2n}, [/mm] aber das bringt mir irgendwie auch alles noch nichts....
Lieben Gruß,
Lisa
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:43 So 18.01.2009 | Autor: | Loddar |
Hallo Lisa!
> Aber wie kommst du dann auf
> [mm]\bruch{n(n+2)}{n+1}+\bruch{1}{(n+1)((n+2))}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
? Darf man in
> einer Summe einfach einen Bruch mit etwas (hier n+2)
> multiplizieren, ohne das im Zähler und/oder beim anderen
> Bruch zu tun?
Selbstverständlich nicht. Da hat Angela leider etwas unterschlagen. Dieser Bruch muss lauten:
$$\bruch{n*(n+2)}{(n+1)*\red{(n+2)}$$
Anschließend wurden dann beide Brüche auf einem Bruch zusammengefasst und die Klammer im Zähler ausmultipliziert.
Gruß
Loddar
|
|
|
|
|
Hallo Loddar,
danke, dass du meine erste Verzweiflung schon einmal beseitigt hast
So, nun bin ich aber leider immer noch nicht wirklich schlauer.
Ich war zwischendurch auch schon bei [mm] \bruch{ n(n+2)+1}{(n+1)(n+2)}, [/mm] hatte da dann aber einfach das (n+2) gekürzt und war so bei [mm] \bruch{ n+1}{1+n}=1 [/mm] gelandet.
Wenn ich nun aber nicht kürze, sondern weiter rechne, komme ich zu [mm] \bruch{ (n+1)^2}{(n+1)^2+(n+1)} [/mm]
Tja, und da steh ich wieder und komm nicht mehr weiter. Wenn ich jetzt [mm] (n+2)^2 [/mm] kürze, habe ich ja nur noch [mm] \bruch{1}{1+(n+1)} [/mm] Darf ich das jetzt einfach mal [mm] \bruch{n}{1} [/mm] nehmen, um dann zum gewünschten Bruch [mm] \bruch{ n+1}{(n+1)+1} [/mm] zu kommen?
Lieben Gruß,
Lisa
|
|
|
|
|
Hallo Lisa,
> Hallo Loddar,
> danke, dass du meine erste Verzweiflung schon einmal
> beseitigt hast
>
> So, nun bin ich aber leider immer noch nicht wirklich
> schlauer.
> Ich war zwischendurch auch schon bei [mm]\bruch{ n(n+2)+1}{(n+1)(n+2)},[/mm]
Und damit 1 cm vor dem Ziel!
> hatte da dann aber einfach das (n+2) gekürzt und war so bei
> [mm]\bruch{ n+1}{1+n}=1[/mm] gelandet.
Ui, nicht aus Summen kürzen!
Außerdem hast du ja erweitert, wenn du direkt wieder kürzt ist das doch doof.
Nun die Klammer ausrechnen:
[mm] $=\frac{n^2+2n+1}{(n+1)\cdot{}(n+2)}$
[/mm]
[mm] $=\frac{(n+1)^2}{(n+1)(n+2)}$
[/mm]
den Rest du!
> Wenn ich nun aber nicht kürze, sondern weiter rechne,
> komme ich zu [mm]\bruch{ (n+1)^2}{(n+1)^2+(n+1)}[/mm]
> Tja, und da steh ich wieder und komm nicht mehr weiter.
> Wenn ich jetzt [mm](n+2)^2[/mm] kürze, habe ich ja nur noch
> [mm]\bruch{1}{1+(n+1)}[/mm] Darf ich das jetzt einfach mal
> [mm]\bruch{n}{1}[/mm] nehmen, um dann zum gewünschten Bruch [mm]\bruch{ n+1}{(n+1)+1}[/mm]
> zu kommen?
> Lieben Gruß,
> Lisa
LG
schachuzipus
|
|
|
|