matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseBrown'sche Bewegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Prozesse" - Brown'sche Bewegung
Brown'sche Bewegung < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brown'sche Bewegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:24 Fr 17.12.2010
Autor: kuemmelsche

Hallo zusammen,
in einem Buch das ich lese steht, dass schnell einzusehen ist, für
  [mm] \mathbb{E} \exp[2B(t)^2] =\begin{cases} \bruch{1}{\sqrt{1-4t}}, & \mbox{fuer } 0\leq t\leq\bruch{1}{4} \\ \infty, & \mbox{fuer } t\geq\bruch{1}{4} \end{cases}[/mm],
aber ich seh irgendwie gar nicht so schnell ein dass das stimmt...

Dabei ist $B(t)$ eine Brown'sche Bewegung.

Hat jemand einen Ansatz oder vllt eine Lösung für mich?

Danke schonmal

lg Kai



        
Bezug
Brown'sche Bewegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Fr 17.12.2010
Autor: kuemmelsche

Hallo zusammen, also erstmal danke an alle, die es versucht haben, ich habs jetzt raus, also bitte die Frage rausnehmen oder auf beantwortet oder so!

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]