matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBriefproblem, Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Briefproblem, Erwartungswert
Briefproblem, Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Briefproblem, Erwartungswert: Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:05 Mi 24.06.2009
Autor: DerGraf

Aufgabe
Wir betrachten das Rencontre Problem, d.h. es werden n Briefe in n bereits adressierte Umschläge gesteckt und verschickt. Bestimmen Sie die mittlere Anzahl der richtig versendeten Briefe in Abhängigkeit von n.

Hallo,
ich habe zwar schon einen Ansatz zu dieser Aufgabe gefunden, bin mir damit aber noch nicht so ganz sicher. Kann mir jemand sagen ob meine Lösung stimmt?

Als Verteilungsfunktion habe ich bei diesem Problem:

[mm] F(k)=P(X=k)=\left( \bruch{n!}{k!} \right)\summe_{i=0}^{n-k}(-1)^{i}*\bruch{1}{i!} [/mm]

Demzufolge wäre der Erwartungswert doch:

[mm] E(X)=\summe_{k=0}^{n}k*P(X=k)=\summe_{k=1}^{n}k*\left( \bruch{n!}{k!} \summe_{i=0}^{n-k}(-1)^{i}*\bruch{1}{i!}\right)=\summe_{k=0}^{n-1}\left( \bruch{n!}{k!} \summe_{i=0}^{n-k-1}(-1)^{i}*\bruch{1}{i!}\right) [/mm]

Ist dies so richtig? Und kann ich das noch vereinfachen?
Ich bräuchte dringend eure Hilfe.

Gruß DerGraf

        
Bezug
Briefproblem, Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 25.06.2009
Autor: wauwau

Du hast in deiner Formel zur Berechnung der Wahrscheinlichkeiten den Faktor  [mm] \bruch{1}{n!} [/mm] vergessen.

Aber gehen wir mal von den
[mm]F(n,k)=\left( \bruch{n!}{k!} \right)\summe_{i=0}^{n-k}(-1)^{i}*\bruch{1}{i!}[/mm]

Das ist nicht die Verteilung sondern die Anzahlfunktion.

Dann gilt die Rekursion

[mm]F(n+1,k+1) = \bruch{n+1}{k+1}F(n,k) [/mm]

oder aber

[mm] (k+1)\bruch{F(n+1,k+1) }{(n+1)!} = \bruch{F(n,k)}{n!} [/mm] (1)

Rechts steht jetzt die richtige Verteilungsfunktion!

Bildet man nun die Erzeugenden Funktionen

[mm]G(n,x)) = \summe_{i=0}^{n} \bruch{F(n,i)x^i}{n!} [/mm] mit G(n,1)=1

so wäre ja G'(n,1) der gesuchte Erwartungswert.

Da aufgrund von (1) jedoch G'(n,x) = G(n,x) gelten muss

ist der gesuchte Erwartungswert 1






Bezug
                
Bezug
Briefproblem, Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Do 25.06.2009
Autor: DerGraf

Vielen Dank für deine Hilfe!
Die Erklärung gefällt mir Spitze :)

Gruß
DerGraf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]