matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBose-Einstein-Statistik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Bose-Einstein-Statistik
Bose-Einstein-Statistik < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bose-Einstein-Statistik: Hilfe!
Status: (Frage) beantwortet Status 
Datum: 15:39 Fr 12.11.2004
Autor: Biene_Hamburg

Hallo liebe Mathe-Raum-Leute,

ich sitze über einer Aufgabe, bei der ich weiß, daß Sie per Induktion lösbar sein soll, aber ich erkenne dies nicht! Wer kann mir bei der Lösung helfen????

Die Aufgabe lautet:

Auf n Zellen sollen k nicht unterscheidbare Teilchen verteilt werden, wobei jede Zelle beliebig viele Teilchen aufnehmen kann.
Man zeige: Es gibt genau
[mm] \vektor{n+k-1 \\ k} [/mm] verschiedene Verteilungen.


Ich hoffe, daß hier irgendwer ein bißchen schlauer ist als ich (manchmal denke ich das das nicht weiter schwer ist...)

Schonmal vorab: DANKE!!!



        
Bezug
Bose-Einstein-Statistik: Geht auch ohne Induktion
Status: (Antwort) fertig Status 
Datum: 17:57 Fr 12.11.2004
Autor: Gnometech

Grüße!

Das geht zum Glück auch ohne Induktion, einfach mit Hilfe von Kombinatorik.

Also, wir nehmen an, dass wir $n$ Zellen und $k$ Teilchen haben. Dann werde ich eine gegebene Verteilung wie folgt codieren: für jedes Teilchen, dass sich in der ersten Zelle befindet, mache ich ein $X$. Dann kommt ein Trennzeichen (ich nehme hier einfach mal $T$ wie "Trennung") und dann kommt quasi Zelle 2: dann mache ich für jedes Teilchen in Zelle 2 ein $X$.

Es entsteht ein Wort, das z.B. so aussehen könnte:

$XXXX [mm] \; [/mm] T [mm] \; [/mm] XX [mm] \; [/mm] T [mm] \; [/mm] X [mm] \; T\; [/mm] T [mm] \; [/mm] XXXXXXX [mm] \; [/mm] T [mm] \; \ldots$ [/mm]

Das würde heißen:

Zelle 1: 4 Teilchen
Zelle 2: 2 Teilchen
Zelle 3: 1 Teilchen
Zelle 4: 0 Teilchen
Zelle 5: 7 Teilchen

Und so weiter.

Jetzt ist klar, dass ich jede mögliche Verteilung auf diese Art (eindeutig) aufschreiben kann. Wieviele verschiedene Möglichkeiten gibt es aber, diese Zeichen anzuordnen? Nun, es sind $k$ Teilchen, also steht $k$ mal das $X$ da. Und bei $n$ Zellen benötige ich $n-1$ mal das $T$ als Trennung (bei zwei Zellen nur 1 $T$, bei 3 Zellen zwei $T$ usw.)

Das heißt, mein "Wort" ist in jedem Fall $k + n - 1$ Zeichen lang, ich habe also genausoviele Positionen. Und wenn ich meine $k$ Zeichen $X$ auf diese Positionen verteilt habe, müssen die übrigen mit $T$ gefüllt sein.

Ich möchte also wissen, wieviele Möglichkeiten ich habe, aus einer Menge mit $k + n - 1$ Elementen (meine Positionen) eine $k$-elementige Teilmenge auszuwählen (das sind dann die Positionen, wo das $X$ steht).

Und da gibt es exakt ${ {k+n-1} [mm] \choose [/mm] k }$ Möglichkeiten.

Ganz einfach also. :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]