matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenBogenlänge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrieren und Differenzieren" - Bogenlänge
Bogenlänge < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge: Rechenfehler?
Status: (Frage) beantwortet Status 
Datum: 19:30 Mi 30.07.2008
Autor: BlubbBlubb

Aufgabe
1a) Man berechne die Länge der Kurve, die durch die Koordinatenfunktionen

[mm] x(t)=e^{-3t}sin(2t) [/mm]

[mm] y(t)=e^{-3t}cos(2t) [/mm]

für t [mm] \in [0,\pi] [/mm]

gegeben ist.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

meine vorgehensweise:

[mm] L=\integral_{a}^{b}{\wurzel{x(t)'^2+y(t)'^2} dt} [/mm]

[mm] x'(t)=-3e^{-3t}sin(2t)+2e^{-3t}cos(2t)=e^{-3t}*(2cos(2t)-3sin(2t)) [/mm]

[mm] y'(t)=-3e^{-3t}cos(2t)+2e^{-3t}(-sin(2t))=e^{-3t}*(-3cos(2t)-2sin(2t)) [/mm]

[mm] x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t))+e^{-6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(13cos^2(2t)+13sin^2(2t)) [/mm]

[mm] \wurzel{ x'(t)^2+y'(t)^2}=e^{-3t}*\wurzel{13} [/mm]

[mm] L=\wurzel{13}\integral_{0}^{\pi}{e^{-3t}dt} [/mm]
[mm] =\bruch{\wurzel{13}}{3}*(1-e^{-3\pi}) [/mm]

das wäre mein lösungsvorschlag ist das richtig?

_________________________________________________________

nun hab ich aber auch eine frage zur berechnung von y'(t):

wenn ich anstellen von:
[mm] y'(t)=e^{-3t}*(-3cos(2t)-2sin(2t)) [/mm]

folgendes rechne:
[mm] y'(t)=-e^{-3t}*(3cos(2t)+2sin(2t)) [/mm]

dann bekomme ich für [mm] x'(t)^2+y'(t)^2: [/mm]

[mm] x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t))-e^{6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(-5cos^2(2t)-24sin(2t)cos(2t)+5sin^2(2t)) [/mm]

und wie man davon die wurzel ziehen soll das weiß ich nicht, das geht in meinen augen nicht wirklich gut.

jetzt stellt sich mir die frage hab ich einen rechenfehler gemacht, oder hab ich richtig gerechnet, aber es kommt einfach so ein unschöner term heraus?

        
Bezug
Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 30.07.2008
Autor: schachuzipus

Hallo BlubbBlubb,

> 1a) Man berechne die Länge der Kurve, die durch die
> Koordinatenfunktionen
>  
> [mm]x(t)=e^{-3t}sin(2t)[/mm]
>  
> [mm]y(t)=e^{-3t}cos(2t)[/mm]
>  
> für t [mm]\in [0,\pi][/mm]
>  
> gegeben ist.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> meine vorgehensweise:
>  
> [mm]L=\integral_{a}^{b}{\wurzel{x(t)'^2+y(t)'^2} dt}[/mm]
>  
> [mm]x'(t)=-3e^{-3t}sin(2t)+2e^{-3t}cos(2t)=e^{-3t}*(2cos(2t)-3sin(2t))[/mm]
>  
> [mm]y'(t)=-3e^{-3t}cos(2t)+2e^{-3t}(-sin(2t))=e^{-3t}*(-3cos(2t)-2sin(2t))[/mm]
>  
> [mm]x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t))+e^{-6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(13cos^2(2t)+13sin^2(2t))[/mm]
>  
> [mm]\wurzel{ x'(t)^2+y'(t)^2}=e^{-3t}*\wurzel{13}[/mm] [ok]
>
> [mm]L=\wurzel{13}\integral_{0}^{\pi}{e^{-3t}dt}[/mm]
>  [mm]=\bruch{\wurzel{13}}{3}*(1-e^{-3\pi})[/mm] [daumenhoch]
>  
> das wäre mein lösungsvorschlag ist das richtig?

Ja, alles bestens!

>
> _________________________________________________________
>  
> nun hab ich aber auch eine frage zur berechnung von y'(t):
>  
> wenn ich anstellen von:
>  [mm]y'(t)=e^{-3t}*(-3cos(2t)-2sin(2t))[/mm]
>  
> folgendes rechne:
>  [mm]y'(t)=-e^{-3t}*(3cos(2t)+2sin(2t))[/mm]
>  
> dann bekomme ich für [mm]x'(t)^2+y'(t)^2:[/mm]
>  
> [mm]x'(t)^2+y'(t)^2=e^{-6t}*(4cos^2(2t)-12sin(2t)cos(2t)+9sin^2(2t)) \ \red{-} \ e^{6t}*(9cos^2(2t)+12sin(2t)cos(2t)+4sin^2(2t))=e^{-6t}*(-5cos^2(2t)-24sin(2t)cos(2t)+5sin^2(2t))[/mm]

Das rot markierte Minus ist falsch, du quadrierst ja als ersten Faktor von $y'(t)$ das [mm] $-e^{-3t}$, [/mm] das gibt [mm] $\left(-e^{-3t}\right)^2=\blue{+}e^{-6t}$ [/mm]

Dann hebt sich wieder alles brav weg, wie beim ersten Ansatz.

Es müssen ja auch beide Ansätze zum selben Ergebnis führen, es sind ja dieselben Ausdrücke für $y'(t)$ ;-)

>  
> und wie man davon die wurzel ziehen soll das weiß ich
> nicht, das geht in meinen augen nicht wirklich gut.
>  
> jetzt stellt sich mir die frage hab ich einen rechenfehler
> gemacht, oder hab ich richtig gerechnet, aber es kommt
> einfach so ein unschöner term heraus?

In der Tat, dank dem VZF ;-)

LG

schachuzipus


Bezug
                
Bezug
Bogenlänge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mi 30.07.2008
Autor: BlubbBlubb

ja stimmt jetzt wo dus sagst seh ich den fehler :P , danke fürs durchschauen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]