matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBlow-ups
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Blow-ups
Blow-ups < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blow-ups: Idee
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 05.06.2017
Autor: Kruemelmonster2

Aufgabe
Wir sagen, dass die Lösung $x$ einer Differentialgleichung [mm] $\dot{x}=f(t,x)$ [/mm] einen Blow-up in endlicher Zeit hat, wenn es ein [mm] $\hat{t}$ [/mm] gibt, so dass

[mm] $\limes_{t\searrow{\hat{t}}}x(t) [/mm] = [mm] \pm \infty$ [/mm] bzw. [mm] $\limes_{t\nearrow{\hat{t}}}x(t) [/mm] = [mm] \pm \infty$ [/mm]

gilt.

Entscheiden Sie ohne eine explizite Lösung auszurechnen, für welche Anfangsdaten [mm] $x_{0}$ [/mm] die Lösung des Anfangswertproblems

[mm] $\dot{x}=(x+1)\cdot (x+2)^2 ln(1+x^2), \quad x(0)=x_{0}$ [/mm]

einen Blow.up zu endlichen Zeiten hat.


Mein Problem ist, dass ich gar nicht weiss wie ich einen Blow-up ohne explizite Lösung erkennen soll.
Ich brauche ja eine Lösung um entscheiden zu können ob ein Blow-up vorliegt oder eben nicht.

Die einzige Idee die ich bislang hatte war, dass die Startwerte $-1$, $-2$ und $0$ ausscheiden, weil sonst die DZG eben die 0 wäre.

Mehr fällt mir bislang leider dazu nicht ein. Wir haben auch mal grobe Skizzierungen dazu gemacht, wie die Lösungen in etwa aussehen müssen. Das habe ich für die vorliegende Funktion ebenfalls einmal gemacht kann daran aber auch keinen Blow-Up erkennen oder wüsste nicht wie das gehen sollte.

Kann mir jemand vll eine Idee geben wie ich das ganze ohne konkrete Berechnung bewerkstelligen kann? Eine konkrete Berechnung haben wir im ersten Aufgabenteil durchführen müssen.

Mit freundlichen Grüßen,
das Krümmelmonster

Note: Irgendwie werden mir die Formel oben nicht angezeigt sondern als Fehlerhaftes Bild welches nicht gelesen werden kann. Das ist unabhängig vom verwendeten Browser und ich weiss nicht warum. Ich hoffe man kann es trdm. lesen :/


        
Bezug
Blow-ups: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Mo 05.06.2017
Autor: andyv

Hallo

Offenbar hast du konstante Lösungen für [mm] $x_0=-1,-2,0$. [/mm]
Mit dem Eindeutigkeitssatz folgere nun, dass Lösungen mit [mm] $x_0 \in [/mm] [-2,0]$ beschränkt sind.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]