matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikBleibende Regelabweichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Regelungstechnik" - Bleibende Regelabweichung
Bleibende Regelabweichung < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bleibende Regelabweichung: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:47 Mo 14.07.2014
Autor: sardelka

Aufgabe
Man bestimme die bleibende Regelabweichung bei einem Einheitssprung für den Regelkreis im Fall [mm] K_{p} [/mm] = 2.

G(s) = [mm] \bruch{1}{(\bruch{s^{2}}{2} + s + 1)(\bruch{s}{3}+1)} [/mm]

[mm] G_{w}(s) [/mm] = [mm] \bruch{6K_{p}}{s^{3} + 5s^{2} + 8s + 6(1+K_{p})} [/mm]

Lösung:

x = Regelgröße
e = Regelabweichung
w = Führungsgröße


[mm] x(\infty) [/mm] = [mm] \bruch{K_{p}}{1+K_{p}} [/mm] = [mm] \bruch{2}{3} [/mm]

[mm] e(\infty) [/mm] = w - [mm] x(\infty) [/mm] = 1 - [mm] \bruch{2}{3} [/mm]  = [mm] \bruch{1}{3} [/mm]

Hallo,

ich habe diese Aufgabe vor mir und ich verstehe nicht wie man auf die Lösung kommt.

Dass w = 1 ist, ist mir klar, weil es ja um einen Einheitssprung handelt.
Wie die Führungsübertragungsfunktion berechnet worden ist, ist mir auch klar. Nun wird ja s = [mm] \infty [/mm] gesetzt, um sich den Grenzwert anzuschauen.

Wenn ich aber s = [mm] \infty [/mm] setze, erhalte ich in der Führungsübertragungsfunktion im Nenner unendlich. Dies führt doch zu einem Grenzwert von 0. In der Lösung steht aber [mm] \bruch{K_{p}}{1+K_{p}} [/mm] als Grenzwert.

Was rechne ich denn falsch?

Vielen Dank für eure Hilfe

        
Bezug
Bleibende Regelabweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mo 14.07.2014
Autor: Herby

Hi Sardelka,

es ist bei mir schon ein paar Tage her, aber es war doch so:

[mm] \limes_{t\rightarrow \infty} [/mm] (im Zeitbereich) ist analog [mm] \limes_{s\rightarrow 0} [/mm] (Bildbereich)


LG
[Dateianhang nicht öffentlich] Herby


Bezug
                
Bezug
Bleibende Regelabweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Mo 14.07.2014
Autor: sardelka

Danke für den Tipp.

Wenn es so ist, dann kommt die richtige Lösung raus. Die Frage wäre eigentlich erledigt.

Aber in der Lösung steht ja in der Klamer unendlich. D.h. es wird s = [mm] \infty [/mm] eingesetzt?  

Ich habe eine zweite sehr ähnliche Aufgabe und dort wird ebenfalls [mm] \infty [/mm] eingesetzt. Ist also kein Flüchtigkeitsfehler. Auch wenn ich in jw umwandel, ändert es nichts an der Antwort.

Bezug
                        
Bezug
Bleibende Regelabweichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Mo 14.07.2014
Autor: Herby

Hi Sardelka,

meiner Meinung nach ist das hier in der Lösung nur ein bisschen (eher ziemlich, denn der Einheitssprung ist ja auch nicht erkennbar) dürftig notiert und es sollte eigentlich [mm] \limes_{t\rightarrow\infty}x(t) [/mm] dort stehen und zusätzlich die Überführung zur Laplacetransformierten. Erst dann kommt man auf [mm] \limes_{s\rightarrow 0}s*F(s) [/mm] <-- was der rechten Seite der Gleichung entspricht.

Ich lass das hier mal auf halb beantwortet stehen, es gibt sicher Ergänzungen hierzu.

ach ja, nur so nebenbei - das mit dem Grenzwert im Bildbereich geht nur, wenn der Grenzwert im Zeitbereich existiert.

LG
[Dateianhang nicht öffentlich] Herby

Bezug
                        
Bezug
Bleibende Regelabweichung: Nomenklatur
Status: (Antwort) fertig Status 
Datum: 19:40 Di 15.07.2014
Autor: Infinit

Hallo sardelka,
Herbys Erklärung ist schon okay und Du solltest etwas auf die Nomenklatur achten. In der RT gilt normalerweise: Variablen mit Kleinbuchstaben bezeichnen Größen im Zeitbereich, solche mit Großbuchstaben die transformierte Größe im Frequenz- / Laplacebereich. Also wird beispielsweise aus dem Zeitsignal [mm] e(t) [/mm] die Laplacetransformierte [mm] E(s) [/mm].
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]