matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBinomische Reihe-Taylorpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Binomische Reihe-Taylorpolynom
Binomische Reihe-Taylorpolynom < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomische Reihe-Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 06.05.2006
Autor: Fei

Aufgabe
Die Taylorreihe der Funktino f(x) = [mm] (1+x)^\alpha, \alpha [/mm] aus  [mm] \IR [/mm] ist
g(x) = T[f,0](x) =  [mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n [/mm]
und hat einen Konvergenzradius R>=1

Zeigen Sie, dass f(x) = g(x) für |x|<1 gilt.

Zeigen Sie zunächst, dass  [mm] \bruch{g'(x)}{g(x)} [/mm] =  [mm] \bruch{\alpha}{1+x} [/mm] und integrieren Sie dann die Gleichung.

Hallo Leute,

Ich bräuchte Hilfe bei dieser Frage, bitte über diesen Weg.
Wenn die oben gegebene Gleichung gilt, dann braucht man ja nur noch zu integrieren und man hat die Lösung. Aber wie kommt man überhaupt auf die Gleichung? Ich habe folgendes ausprobiert:

[mm] \bruch{g'(x)}{g(x)} [/mm] =  [mm] \bruch{\alpha}{1+x} [/mm]
[mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1} [/mm] (1+x) = [mm] \alpha \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n [/mm]
[mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1} [/mm]  + [mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^n [/mm] = [mm] \summe_{n=0}^{\infty} \alpha \vektor{ \alpha \\ n} x^n [/mm]
[mm] \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1} [/mm] = [mm] \summe_{n=0}^{\infty} (\alpha-n) \vektor{ \alpha \\ n} x^n [/mm]

Nun bin ich am Ende meiner Weißheit, das kann doch nicht richtig sein, da fehlt doch ein x?!?!

Freue mich auf jede Hilfe, danke
Fei

        
Bezug
Binomische Reihe-Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Sa 06.05.2006
Autor: felixf

Hi Fei!

> Die Taylorreihe der Funktino f(x) = [mm](1+x)^\alpha, \alpha[/mm]
> aus  [mm]\IR[/mm] ist
>  g(x) = T[f,0](x) =  [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n[/mm]
>  
> und hat einen Konvergenzradius R>=1
>  
> Zeigen Sie, dass f(x) = g(x) für |x|<1 gilt.
>  
> Zeigen Sie zunächst, dass  [mm]\bruch{g'(x)}{g(x)}[/mm] =  
> [mm]\bruch{\alpha}{1+x}[/mm] und integrieren Sie dann die
> Gleichung.
>  Hallo Leute,
>  
> Ich bräuchte Hilfe bei dieser Frage, bitte über diesen
> Weg.
>  Wenn die oben gegebene Gleichung gilt, dann braucht man ja
> nur noch zu integrieren und man hat die Lösung. Aber wie
> kommt man überhaupt auf die Gleichung? Ich habe folgendes
> ausprobiert:
>  
> [mm]\bruch{g'(x)}{g(x)}[/mm] =  [mm]\bruch{\alpha}{1+x}[/mm]
>   [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1}[/mm]
> (1+x) = [mm]\alpha \summe_{n=0}^{\infty} \vektor{ \alpha \\ n} x^n[/mm]
>  
>  [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1}[/mm]  +
> [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^n[/mm] =
> [mm]\summe_{n=0}^{\infty} \alpha \vektor{ \alpha \\ n} x^n[/mm]
>  
> [mm]\summe_{n=0}^{\infty} \vektor{ \alpha \\ n} nx^{n-1}[/mm] =
> [mm]\summe_{n=0}^{\infty} (\alpha-n) \vektor{ \alpha \\ n} x^n[/mm]

Da fehlen ganz viele Aequivalenzzeichen!

Mach doch mal ne Indexverschiebung auf der linken Seite: [mm] $\sum_{n=0}^\infty \binom{\alpha}{n} [/mm] n [mm] x^{n-1} [/mm] = [mm] \sum_{n=1}^\infty \binom{\alpha}{n} [/mm] n [mm] x^{n-1} [/mm] = [mm] \sum_{m=0}^\infty \binom{\alpha}{m + 1} [/mm] (m + 1) [mm] x^m$, [/mm] wobei $m = n - 1$ ist.

So. Jetzt hast du also [mm] $\sum_{n=0}^\infty \binom{\alpha}{n + 1} [/mm] (n + 1) [mm] x^n [/mm] = [mm] \sum_{n=0}^\infty \binom{\alpha}{n} (\alpha [/mm] - n) [mm] x^n$. [/mm] Nach dem Identitaetssatz fuer Potenzreihen ist das aequivalent zu [mm] $\binom{\alpha}{n + 1} [/mm] (n + 1) = [mm] \binom{\alpha}{n} (\alpha [/mm] - n)$ fuer alle $n [mm] \ge [/mm] 0$. Jetzt setz doch mal die Definition von [mm] $\binom{\alpha}{n}$ [/mm] ein und pruefe das nach!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]