matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBinomische Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Binomische Formel
Binomische Formel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomische Formel: Entwicklung der bin. Formel
Status: (Frage) beantwortet Status 
Datum: 16:36 Fr 26.05.2006
Autor: Kai1304

Aufgabe
Entwickeln Sie zunächst mit Hilfe des binomischen Lehrsatzes den Ausdruck  ( [mm] \bruch{3}{4} \pm [/mm] x [mm] )^5 [/mm] dann geben Sie die Summanden in der "gekürzten" Bruchform an


Ich brauche unbedingt Hilfe! habe hier zwar die Lösung aber weiß überhaupt nicht wie man darauf kommen kann!

bitte helft mir! wenn es geht nicht so hammer mathematisch ;)!

Vielen Dank!

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kai

        
Bezug
Binomische Formel: binomischer Lehrsatz
Status: (Antwort) fertig Status 
Datum: 16:54 Fr 26.05.2006
Autor: Loddar

Hallo Kai,

[willkommenmr] !!


Ganz so unmathematisch geht es hier aber nicht ... wie lautet denn der binomische Lehrsatz?

[mm] [quote]$(a+b)^n [/mm] \ = \  [mm] \summe_{k=0}^{n}\vektor{n\\k}*a^{n-k}*b^k [/mm] \ = \  [mm] \vektor{n\\0}*a^{n-0}*b^0+\vektor{n\\1}*a^{n-1}*b^1+...+\vektor{n\\n}*a^n-n*b^n [/mm] \ = \  [mm] 1*a^{n}*1+\vektor{n\\1}*a^{n-1}*b+...+1*1*b^n$[/quote] [/mm]
Für Deine spezielle Aufgabe musst Du nun wählen: $a \ := \ [mm] \bruch{3}{4}$ [/mm] sowie $b \ := \ [mm] \pm [/mm] \ x$ :

[mm] $\left[\bruch{3}{4}+(\pm \ x)\right]^5 [/mm] \ = \  [mm] \summe_{k=0}^{5}\vektor{n\\k}*\left(\bruch{3}{4}\right)^{n-k}*(\pm [/mm] \ [mm] x)^k$ [/mm]

$= \ [mm] \vektor{5\\0}*\left(\bruch{3}{4}\right)^{5}*(\pm [/mm] \ [mm] x)^0+\vektor{5\\1}*\left(\bruch{3}{4}\right)^{4}*(\pm [/mm] \ [mm] x)^1+\vektor{5\\2}*\left(\bruch{3}{4}\right)^{3}*(\pm [/mm] \ [mm] x)^2+\vektor{5\\3}*\left(\bruch{3}{4}\right)^{2}*(\pm [/mm] \ [mm] x)^3+\vektor{5\\4}*\left(\bruch{3}{4}\right)^{1}*(\pm [/mm] \ [mm] x)^4+\vektor{5\\5}*\left(\bruch{3}{4}\right)^{0}*(\pm [/mm] \ [mm] x)^5 [/mm] \ = \ ...$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]