matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBinomialkoeffizient
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Binomialkoeffizient
Binomialkoeffizient < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Korrektur/Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:50 Do 21.04.2011
Autor: Roffel

Aufgabe
Zeigen sie folgende aussagen:

a) [mm] \vektor{n \\ 1} [/mm] = n

hi
also ich hab ein problem mit der Lösung zu der Aufgabe hier:
[mm] \vektor{n \\ 1} [/mm] = n

also:
[mm] \vektor{n \\ 1}=\bruch{n!}{1!(n-1)!} [/mm] das versteh ich noch... aber jetzt der nächste schritt ist mir unklar...

[mm] =\bruch{1*2...*(n-1)*n}{1*1*2...*(n-1)} [/mm] das versteh ich nicht ganz... für mich ist eigentlich n! nur 1*2...n wie kommt denn da das n-1 einfach noch so oben hin?? hä^^
und ich dachte z.b. es ist :(k+1)! = 1*2... k(k+1)  
oder wie schreibt man das richtig allgemein??


Gruß

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 21.04.2011
Autor: Blech

Hi,

sagen wir n=6.

Jetzt schreibst Du für n=6 mal sowohl

[mm] $1*2\cdots [/mm] n$

und

[mm] $1*2\cdots [/mm] (n-1)*n$

hin.

ciao
Stefan

Bezug
        
Bezug
Binomialkoeffizient: Definition verwenden
Status: (Antwort) fertig Status 
Datum: 18:10 Do 21.04.2011
Autor: Loddar

Hallo Roffel!


Bedenke, dass aufgrund der Definition für die Fakultät gilt:

$n! \ = \ (n-1)!*n$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]