matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBinomialkoeff., Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Binomialkoeff., Induktion
Binomialkoeff., Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeff., Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 So 18.10.2009
Autor: ChopSuey

Aufgabe
Zeige mittels vollst. Induktion, dass für alle $ n,k,m [mm] \in \mathbb [/mm] N $ die folgende Aussage gilt:

$ [mm] \ {n+m \choose k} [/mm] = [mm] \sum\limits_{i=0}^k [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k-i} $

Hallo,

das ist eine Hausübung, bei der ich so langsam alles, was mir so einfiel, probiert hab doch entweder ich habe gleich zu Beginn irgendwas falsch gemacht, oder ich seh etwas ganz wesentliches nicht.

Induktionsanfang: $ k = 0 [mm] $\\ [/mm]

$ {n+m [mm] \choose [/mm] 0} =   {n [mm] \choose [/mm] 0} {m [mm] \choose [/mm] 0} [mm] $\\ [/mm]

$ 1 = 1*1 $ ist wahr. [mm] \\ [/mm]

Wir vermuten, die Aussage gilt für alle $ k [mm] \in \mathbb [/mm] N$.

Induktionsschritt: $k [mm] \to [/mm] k+1$


Es ist $ [mm] \sum\limits_{i=0}^k [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k-i} = {n [mm] \choose [/mm] 0} {m [mm] \choose [/mm] k}+{n [mm] \choose [/mm] 1} {m [mm] \choose [/mm] k-1}+...+{n [mm] \choose [/mm] k} {m [mm] \choose [/mm] 0} [mm] $\\ [/mm]

$ [mm] \sum\limits_{i=0}^{k+1} [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k+1-i} = [mm] \sum\limits_{i=0}^k [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k-i} + {n [mm] \choose [/mm] k+1} {m [mm] \choose [/mm] 0} [mm] $\\ [/mm]

Folglich ist

$ [mm] \sum\limits_{i=0}^{k+1} [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k+1-i} = {n [mm] \choose [/mm] 0} {m [mm] \choose [/mm] k}+{n [mm] \choose [/mm] 1} {m [mm] \choose [/mm] k-1}+...+{n [mm] \choose [/mm] k} {m [mm] \choose [/mm] 1} + {n [mm] \choose [/mm] k+1} {m [mm] \choose 0}$\\ [/mm]

$ {n+m [mm] \choose [/mm] k}+ {n [mm] \choose [/mm] k+1} {m [mm] \choose [/mm] 0} = [mm] \sum\limits_{i=0}^{k+1} [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k+1-i} [mm] $\\ [/mm]

$ {n+m [mm] \choose [/mm] k}+ {n [mm] \choose [/mm] k+1} = [mm] \sum\limits_{i=0}^{k+1} [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k+1-i} [mm] $\\ [/mm]

$ [mm] \frac{(n+m)!}{k!(n+m-k)!} [/mm] + [mm] \frac{n!}{(k+1)!(n-(k+1))!} [/mm] = [mm] \sum\limits_{i=0}^{k+1} [/mm] {n [mm] \choose [/mm] i} {m [mm] \choose [/mm] k+1-i} [mm] $\\ [/mm]

Ja, und alles, was danach kommt, sind bloß Versuche, die Brüche irgendwie so umzuformen, dass ich das Ganze auf den Ausdruck

$\ [mm] \vektor{n+m \\ k+1} [/mm] $ zurueckführen kann.

Würde mich freuen, wenn mir jemand sagen kann, ob ich etwas falsch gemacht habe und möglicherweise auch was genau. Vielleicht hab ich auch bloß nen Fehler in meinen Überlegungen.
Falls das bisher allerdings stimmt, reicht es, wenn ich weiss, dass ich mir bisschen mehr einfallen lassen muss.

Danke
Grüße
ChopSuey

        
Bezug
Binomialkoeff., Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 So 18.10.2009
Autor: angela.h.b.


> Zeige mittels vollst. Induktion, dass für alle [mm]n,k,m \in \mathbb N[/mm]
> die folgende Aussage gilt:
>  
> [mm]\ {n+m \choose k} = \sum\limits_{i=0}^k {n \choose i} {m \choose k-i}[/mm]
>  
> Hallo,
>
> das ist eine Hausübung, bei der ich so langsam alles, was
> mir so einfiel, probiert hab doch entweder ich habe gleich
> zu Beginn irgendwas falsch gemacht, oder ich seh etwas ganz
> wesentliches nicht.
>  
> Induktionsanfang: [mm]k = 0[/mm][mm] \\[/mm]
>  
> [mm] {n+m \choose 0} = {n \choose 0} {m \choose 0}[/mm][mm] \\[/mm]
>  
> [mm]1 = 1*1[/mm] ist wahr. [mm]\\[/mm]
>  
> Wir vermuten nehmen an, die Aussage gilt für alle [mm]k \in \mathbb N[/mm].
>  
> Induktionsschritt: [mm]k \to k+1[/mm]
>  
>
> Es ist [mm]\sum\limits_{i=0}^k {n \choose i} {m \choose k-i} = {n \choose 0} {m \choose k}+{n \choose 1} {m \choose k-1}+...+{n \choose k} {m \choose 0}[/mm][mm] \\[/mm]
>  
> [mm]\sum\limits_{i=0}^{k+1} {n \choose i} {m \choose k+1-i} = \sum\limits_{i=0}^k {n \choose i} {m \choose k-i} + {n \choose k+1} {m \choose 0}[/mm][mm] \\[/mm]



Hallo,,

das stimmt nicht.

Es ist

[mm]\sum\limits_{i=0}^{k+1} {n \choose i} {m \choose k+1-i} = \sum\limits_{i=0}^k {n \choose i} {m \choose k+1-i} + {n \choose k+1} {m \choose 0}[/mm][mm] \\[/mm]

Gruß v. Angela




>  
> Folglich ist
>
> [mm]\sum\limits_{i=0}^{k+1} {n \choose i} {m \choose k+1-i} = {n \choose 0} {m \choose k}+{n \choose 1} {m \choose k-1}+...+{n \choose k} {m \choose 1} + {n \choose k+1} {m \choose 0}[/mm][mm] \\[/mm]
>  
> [mm]{n+m \choose k}+ {n \choose k+1} {m \choose 0} = \sum\limits_{i=0}^{k+1} {n \choose i} {m \choose k+1-i}[/mm][mm] \\[/mm]
>  
> [mm]{n+m \choose k}+ {n \choose k+1} = \sum\limits_{i=0}^{k+1} {n \choose i} {m \choose k+1-i}[/mm][mm] \\[/mm]
>  
> [mm]\frac{(n+m)!}{k!(n+m-k)!} + \frac{n!}{(k+1)!(n-(k+1))!} = \sum\limits_{i=0}^{k+1} {n \choose i} {m \choose k+1-i}[/mm][mm] \\[/mm]
>  
> Ja, und alles, was danach kommt, sind bloß Versuche, die
> Brüche irgendwie so umzuformen, dass ich das Ganze auf den
> Ausdruck
>  
> [mm]\ \vektor{n+m \\ k+1}[/mm] zurueckführen kann.
>  
> Würde mich freuen, wenn mir jemand sagen kann, ob ich
> etwas falsch gemacht habe und möglicherweise auch was
> genau. Vielleicht hab ich auch bloß nen Fehler in meinen
> Überlegungen.
>  Falls das bisher allerdings stimmt, reicht es, wenn ich
> weiss, dass ich mir bisschen mehr einfallen lassen muss.
>  
> Danke
>  Grüße
>  ChopSuey


Bezug
                
Bezug
Binomialkoeff., Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 So 18.10.2009
Autor: ChopSuey

Hallo Angela,

diese blöde obere Grenze ;-)
Vielen Dank

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]