matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBinäre Operation mit +,- und *
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Binäre Operation mit +,- und *
Binäre Operation mit +,- und * < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binäre Operation mit +,- und *: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 20:19 Mo 29.11.2010
Autor: Angelnoir

Aufgabe
Prüfen Sie folgende binäre Operation [mm] \circ : \IR x \IR \to \IR [/mm] auf Assoziativität, Kommuttivität und Existenz eines neutralen Elementes.

[mm]a \circ b = a+b-ab [/mm]

Hinweis: Rechts des Gleichietszeichens stehen die gewöhnliche Addition, Subtraktion und Multiplikation in [mm] \IR[/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Forum!

Zu dieser Aufgabenstellung nur ein Test ob ich das Thema verstanden habe =)
Assoziativtät bedeutet dann:
[mm] (a \circ b) \circ c = a \circ ( b\circ c) \qquad (a \circ b) \circ c = (a +b-ab)+c-(a+b-ab)c = \dots [/mm]

Falls ich das richtig aufgestellt habe, arbeite ich jetzt mit dem Hinweis, dass die Operationen die gewhnlichen in R sind für die wir Assoziativ und Kommutativ schon bewiesen haben.
Richtig? Denkfehler? Freue mich auf Antwort!

Lg Angelnoir

        
Bezug
Binäre Operation mit +,- und *: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 29.11.2010
Autor: Sax

Hi,

ja, genau so ist es.

Gruß Sax.

Bezug
        
Bezug
Binäre Operation mit +,- und *: Komplette Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Mo 29.11.2010
Autor: Angelnoir

So, also denke ich bin jetzt fertig und schreibe jtzt mal für alle, denen es helfen könnte, die Lösung (für dessen Korrektheit ich allerdings nicht garantieren kann):

Assoziativität: [mm](a \circ b)\circ c=a\circ (b\circ c) [/mm]
Kommutativität: [mm]a\circ b= b\circ a[/mm]
Neutrales Element: [mm]a\circ e=a[/mm]
Beweis für Assoziativ:
[mm](a\circ b)\circ c\\ &=(a+b-ab)+c-(a+b-ab)c\\ &=a+b-ab+c-(ca +cb-cab)\\ &=a+b+c-ab-ca-cb+cab\\ &=a+b+c-bc-ab-ac-abc\\ &=a+(b+c-bc)-a(b+c-bc)=a\circ(b\circ c)[/mm] (Kommutativität und Assoziativität von "+" und "*" in R)

Beweis für Kommutativ:
[mm]a\circ b=a+b-ab=b+a-ba=b\circ a[/mm] aufgrund der Kommutativität von "+" und "*" in R

Neutrales Element:
[mm]a\circ e=a+e-ae=a \qquad e=0[/mm]

Das Neutrale Element hab ich durch Einsetzen heraus, bzw weil es das neutrale Element der Addition und Subtraktion ist und die 0 in der Multipliikation den bekannten Effekt des "Auslöschens" hat. Keine sehr mathematische Begründung ;)

Ich hoffe das hilft jemandem =)
LG Angelnoir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]