matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBin. Formel in Komm. Ring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Bin. Formel in Komm. Ring
Bin. Formel in Komm. Ring < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bin. Formel in Komm. Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Do 09.06.2011
Autor: Sup

Ich sollte gerade die binomische Formel per vollständige Induktion beweisen, was ich auch geschafft hab.
Die Vorraussetzungen waren: x,y [mm] \in \IQ [/mm] \ {0} und n [mm] \in \IN. [/mm]
[mm] (x+y)^n=\summe_{k=0}^{n}\vektor{n \\ k}x^{n-k}y^k [/mm]

Nun soll x,y Elemente eines assoziativen Rings sein.
Die Frage war, welche Eigenschaft der Ring sonst noch haben muss, damit die Formel gilt.

Für mich ist klar, dass der Ring kommutativ bzgl. der Multiplikation sein soll. Nur weiß ich nicht so recht wie ich das begründe.
Mein erster Gedanke war jetzt, dass der Binominalkoeffizient über die Fakultäten definiert ist, aber wenn ich die als [mm] \produkt_{i=1}^{n}i [/mm] schreibe ist ja die Reihenfolge eig. auch definiert.

Edit: Mir kam glaub ich grad der zündende Gedanke, hab wieder zu kompliziert gedacht.
Wäre der Ring nicht kommutativ wäre ja [mm] (r+s)^2=r^2+2rs+s^2\not=r^2+2sr+s^2=(s+r)^2 [/mm]
weil [mm] rs\not=sr [/mm]

        
Bezug
Bin. Formel in Komm. Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Do 09.06.2011
Autor: Schadowmaster

Na da bist du ja schon fast selbst fertig mit der Aufgabe.^^
Nur eine Kleinigkeit noch, bevor du das am Ende noch falsch ablieferst:

Wäre der Ring nicht kommutativ so wäre:
[mm] $(r+s)^2 [/mm] = [mm] r^2 [/mm] + rs + sr + [mm] s^2$ [/mm]
Das heißt du darfst da überhaupt nichts zu 2rs oder 2sr zusammenfassen, eben weil $rs [mm] \not= [/mm] sr$

Davon abgesehen hast du natürlich recht, wenn dein Ring kommutativ ist gilt die binomische Formel über ihm.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]