matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesBilinearform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Bilinearform
Bilinearform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Mo 09.06.2008
Autor: goldeneye

Aufgabe
Sei [mm] V_{n} \subset C^{\infty} [/mm] (R,R) der Vektorraum, der von den Funktionen
t [mm] \to e^{kt} [/mm] | -n [mm] \le [/mm] k [mm] \le [/mm] n aufgespannt wird. Sei [mm] \partial [/mm] die Bilinearform mit [mm] \partial(f,g) [/mm] = (f . [mm] g)^{,} [/mm] (0). Finden Sie eine Orthonormabasis von [mm] V_{1} [/mm] bzgl. [mm] \partial [/mm]

kann vielleicht jemand helfen vielleicht
Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bilinearform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 Di 10.06.2008
Autor: Marcel

Hallo,

> Sei [mm]V_{n} \subset C^{\infty}[/mm] (R,R) der Vektorraum, der von
> den Funktionen
> t [mm]\to e^{kt}[/mm] | -n [mm]\le[/mm] k [mm]\le[/mm] n aufgespannt wird.

> Sei
> [mm]\partial[/mm] die Bilinearform mit [mm]\partial(f,g)[/mm] = (f . [mm]g)^{,}[/mm]
> (0). Finden Sie eine Orthonormabasis von [mm]V_{1}[/mm] bzgl.
> [mm]\partial[/mm]
>  kann vielleicht jemand helfen vielleicht
> Vielen Dank
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

könntest Du den rotmarkierten Satz erläutern/erklären/ergänzen? Mir ist unklar, wie die Bilinearform [mm] $\partial$ [/mm] genau definiert ist. Ansonsten können wir gerne helfen. Aber dazu solltest Du uns erstmal sagen, welche Gedanken Du Dir bisher zu der Aufgabe schon gemacht hast und was Dir unklar ist. Denn bekanntlich ist der MR keine Lösungsmaschine, siehe auch Forenregeln. Wobei ich es durchaus akzeptiere, wenn Du mit Deinen bisherigen Ansätzen gar kein Ergebnis erhalten haben solltest, aber auch dann sollte es wenigstens stichwortartig möglich sein, zu sagen:
"Ich habe nun versucht, den Satz mit ... anzuwenden, aber..."

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]