matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteBilinearform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Bilinearform
Bilinearform < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 01.05.2007
Autor: Improvise

Aufgabe
Es sei V ein [mm] \IC [/mm] - Vektorraum mit dimV [mm] \ge [/mm] 2. Beweisen Sie, dass es zu jeder Bilinearform f: V [mm] \times [/mm] V [mm] \to \IC [/mm] ein v [mm] \in [/mm] V \ {0} mit f(v,v)=0 gibt.

Also ich komme hier nicht weiter. ich habe [mm] 0=f(v,v)=v^2 [/mm] * f(1,1) , also gibt es ein v, welches diese gleiche lösung (da [mm] \IC [/mm] alg. abgeschlossen), aber ich weiß nicht, wie ich zeigen soll, das v [mm] \not= [/mm] 0 ist. kann mir jemand helfen??? vielen dank im vorraus...

        
Bezug
Bilinearform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Di 01.05.2007
Autor: wauwau

Deine argumentation ist nicht richtig.

[mm] f(\lambda*v,w)=f(v;\lambda*w)=\lambda*f(v,w) [/mm]

und v und w aus einem mind. 2 dimensionalen Vektorraum.
Ich würde eher eine Basis des Vektorraums hernehmen. Die Bilinearform mit Hilfe einer Matrix ansetzen und schauen ob ich so ans Ziel kommen...

Bezug
                
Bezug
Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mi 02.05.2007
Autor: Improvise

mmh, irgendwie komm ich so auf nix.
Bezug
                        
Bezug
Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 02.05.2007
Autor: wauwau

Es handelt sich um eine Bilinearform nach  [mm] \IC [/mm]

d.h. z.B..

f(v,v)= (-i)*i*f(v,v)= -i*f(iv,v)

Vielleicht bringt dich die Überlegung

[mm] i*f(v,v)=\bruch{1}{2}*f(v+iv,v+iv)=\bruch{1}{2}*(f(v,v+iv)+i*f(v,v+iv))=..... [/mm]

weiter

Bezug
                                
Bezug
Bilinearform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:14 Mi 02.05.2007
Autor: Improvise

boah, ich komme heute auf nix gescheites......ich hab bei der aufgabe noch NIX brauchbares zu papier gebracht und die tipps kann ich auchnet umsetzen, sorry.......hast du vielleicht noch nen tipp/hilfe? vielen dank schonmal.....

Bezug
                                        
Bezug
Bilinearform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 04.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]