matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBeweisen von Surj. Injekt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Beweisen von Surj. Injekt.
Beweisen von Surj. Injekt. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen von Surj. Injekt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Mi 12.11.2008
Autor: JaJaJan

Aufgabe
Untersuchen Sie folgende Funktionen auf Injektivität, Surjektivität und Bijektivität:

a) f: [mm] \IR^{3} \mapsto \IR^{2}, [/mm] (x,y,z) [mm] \mapsto [/mm] (x-z,y-z)

b) f: [mm] \IR^{2} \mapsto \IR^{3}, [/mm] (x,y) [mm] \mapsto [/mm] (x,y,x+y)

Hallo zusammen!

Zu der gegebenen Aufgabe habe ich mal eine Frage.



Zu a) denke ich, das diese Funktion Surjektiv ist und die Funktion von b) ist injektiv.

Nun wollte ich gerne mal wissen wie ich soetwas zeigen bzw. beweisen kann.

Würde mich über eine Antwort freuen.

Danke im voraus.

Gruß
Jan

Diese Frage habe ich in keinem anderen Forum gestellt.

        
Bezug
Beweisen von Surj. Injekt.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mi 12.11.2008
Autor: Marcel

Hallo,

> Untersuchen Sie folgende Funktionen auf Injektivität,
> Surjektivität und Bijektivität:
>  
> a) f: [mm]\IR^{3} \mapsto \IR^{2},[/mm] (x,y,z) [mm]\mapsto[/mm] (x-z,y-z)
>  
> b) f: [mm]\IR^{2} \mapsto \IR^{3},[/mm] (x,y) [mm]\mapsto[/mm] (x,y,x+y)
>  Hallo zusammen!
>  
> Zu der gegebenen Aufgabe habe ich mal eine Frage.
>  
>
>
> Zu a) denke ich, das diese Funktion Surjektiv ist

naja, um zu prüfen, ob diese Funktion surjektiv ist:
Du musst herausfinden, ob es zu jedem Paar [mm] $(y_1,y_2) \in \IR^2$ [/mm] ein Tripel [mm] $(x_1,x_2,x_3) \in \IR^3$ [/mm] gibt mit [mm] $f(x_1,x_2,x_3)=(y_1,y_2)\,.$ [/mm]

Seien also [mm] $y_1,y_2 \in \IR$ [/mm] beliebig, aber fest und [mm] $x_1,x_2,x_3 \in \IR\,.$ [/mm] Du hast nun zu prüfen, ob das Gleichungssystem

[mm] $$x_1-x_3=y_1$$ [/mm]
[mm] $$x_2-x_3=y_2$$ [/mm]

lösbar (in den Variablen [mm] $x_1,x_2,x_3$) [/mm] ist. Das ist der Fall. Ich kann sogar noch ein wenig konkreter werden:
Mit [mm] $x_3:=0$ [/mm] folgt [mm] $x_1=y_1$ [/mm] und [mm] $x_2=y_2\,.$ [/mm]

Mit anderen Worten:
$f(x,y,0)=(x,y)$ zeigt schon die Surjektivität von [mm] $f\,.$ [/mm]

Injektiv wird diese Funktion nicht sein. Das kannst Du Dir entweder separat überlegen. (Aus [mm] $f(x_1,x_2,x_3)=f(\tilde{x}_1,\tilde{x}_2,\tilde{x}_3)$ [/mm] müsste ja stets auch [mm] $(x_1,x_2,x_3)=(\tilde{x}_1,\tilde{x}_2,\tilde{x}_3)\,,$ [/mm] also [mm] $x_1=\tilde{x}_1$ [/mm] und [mm] $x_2=\tilde{x}_2$ [/mm] und [mm] $x_3=\tilde{x}_3\,,$ [/mm] folgen.)

Oder Du überlegst so:
[mm] $f(1,1,1)=(0,0)\,,$ [/mm] aber (siehe Rechnung der Surjektivität) es ist auch [mm] $f(0,0,0)=(0,0)\,.$ [/mm]

> und die
> Funktion von b) ist injektiv.

Ist die Funktion aus b) denn auch surjektiv (Tipp: Findest Du $(x,y) [mm] \in \IR^2$ [/mm] mit $f(x,y)=(1,1,4)$?)

Zur Injektivität:
Du kannst ja z.B. so anfangen:
Folgt aus [mm] $f(x_1,x_2)=f(\tilde{x}_1,\tilde{x}_2)$ [/mm] auch [mm] $(x_1,x_2)=(\tilde{x_1},\tilde{x}_2)$ [/mm] (also [mm] $x_1=\tilde{x}_1$ [/mm] und [mm] $x_2=\tilde{x}_2$)? [/mm]

Dann solltest Du sofort sehen: Ja! ;-)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]