matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweisen einer Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Beweisen einer Ungleichung
Beweisen einer Ungleichung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:17 So 20.05.2012
Autor: Lu-

Aufgabe
Zeigen sie : [mm] (\frac{n}{e})^n \le [/mm] n!
für n=1,2..

Das Bsp kam bei meiner Prüfung dran, ich würde gerne wissen wie es funktioniert.
Hätte man das mit vollständiger Induktion lösen sollen oder wie?

Liebe Grüße

        
Bezug
Beweisen einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 So 20.05.2012
Autor: leduart

Hallo
ich wuerd das mit volst Induktion loesen. warum fragst du statt es einfach zu probieren?
gruss leduart

Bezug
                
Bezug
Beweisen einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 So 20.05.2012
Autor: Lu-

Dachte es gibt vielleicht einen Trick ohne vollständige Induktion.

In der Prüfung habe ich es so versucht:

Zeigen sie : $ [mm] (\frac{n}{e})^n \le [/mm] $ n!
für n=1,2..

I.Anfang [mm] (\frac{1}{e}) \le [/mm] 1
I.Annahme: $ [mm] (\frac{n}{e})^n \le [/mm] $ n!
I.Schritt n-> n+1
[mm] (\frac{n+1}{e})^{n+1} [/mm] = [mm] (\frac{n+1}{e})^{n} [/mm] * [mm] (\frac{n+1}{e}) \le [/mm] n! [mm] *(\frac{n+1}{e})= \frac{(n+1)!}{e} [/mm] < (n+1)!

Bezug
                        
Bezug
Beweisen einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 So 20.05.2012
Autor: leduart

hallo
dein Beweis ist zwar richtig, es fehlt ein Zwischenschritt:
$ [mm] (\frac{n+1}{e})^{n+1} [/mm] $ = $ [mm] (\frac{n+1}{e})^{n} [/mm] $ * $ [mm] (\frac{n+1}{e}) \le $(\frac{n.}{e})^{n} [/mm] $ * $ [mm] (\frac{n+1}{e}) \le [/mm] $<...
nach Induktionsvors.
Gruss leduart

Bezug
                                
Bezug
Beweisen einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:55 So 20.05.2012
Autor: Lu-

Warum gilt der Schritt:
[mm] (\frac{n+1}{e})^n*\frac{n+1}{e} [/mm] <= [mm] (\frac{n}{e})^n [/mm] * [mm] \frac{n+1}{e} [/mm]
? Das ist doch falsch? Oder habe ich das falsch gelesen?

Bezug
                                        
Bezug
Beweisen einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 So 20.05.2012
Autor: barsch

Hallo!

leduart meint, dass du hier

> [mm] (\frac{n+1}{e})^{n+1} = (\frac{n+1}{e})^{n} * (\frac{n+1}{e}) \le n! \cdot{}(\frac{n+1}{e})= \frac{(n+1)!}{e} < (n+1)![/mm]

nicht die IV nutzt.


> Warum gilt der Schritt:
>  [mm](\frac{n+1}{e})^n*\frac{n+1}{e}[/mm] <= [mm](\frac{n}{e})^n[/mm] * [mm]\frac{n+1}{e}[/mm]
>  ? Das ist doch falsch? Oder habe ich das falsch gelesen?

Da ist die Ausgabe bei leduart misslungen. So war das sicher nicht gemeint.

Soweit

[mm](\frac{n+1}{e})^{n+1} = (\frac{n+1}{e})^{n} * (\frac{n+1}{e})[/mm]

ist schon mal gut. Nun würde ich mit [mm]\bruch{n^n}{n^n}[/mm] multiplizieren. Nun kannst du die Induktionsvoraussetzung verwenden und dann geschickt Umformen.

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]