matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweisen, dass es Konvergiert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Beweisen, dass es Konvergiert
Beweisen, dass es Konvergiert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen, dass es Konvergiert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Mi 16.05.2012
Autor: kleinerGleich

Aufgabe
Beweisen Sie, dass die Reihe $ [mm] \summe_{n\ge1}^ [/mm] $  [mm] \bruch{1}{n(n+1)} [/mm]  konvergiert und bestimme den Reihenwert. Hinweis: Schreibe 1/n(n+1) = a(n) - a(n+1)fur eine geeignete Folge an: Daraus ergibt sich eine explizite Formel fur die N-te
Partialsumme

Hallo,
Ich hab so eine ähnliche Frage schon hier Forum gefunden:
https://matheraum.de/forum/Reihenwert_bestimmen/t559067
Aber hier würde die "Partialbruchzerlegung" verwendet und die hatte wir bis jetzt nicht in unserer Vorlesung und da weiß ich nicht ob ich die Verwenden darf.

Als Idee hatte ich folgende Idee:
[mm] |\bruch{n-1}{n} [/mm] - [mm] \bruch{n}{n+1)}|= [/mm] | [mm] \bruch{1}{n(n+1)} [/mm] |= | an-an+1 |
Bin mir aber nicht sicher ob man, dass so machen kann.

Ich hoffe ihr könnt mir weiterhelfen


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisen, dass es Konvergiert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mi 16.05.2012
Autor: reverend

Hallo KleinerGleich, [willkommenmr]

Ich denke hier ist nur dies gesucht:

[mm] \bruch{1}{n}-\bruch{1}{n+1}=\bruch{1}{n(n+1)} [/mm]

Das ist zwar faktisch eine Partialbruchzerlegung, aber man kann auch so drauf kommen.
Damit kannst Du Deine Summe schön als Teleskopsumme darstellen und den Grenzwert finden.

Grüße
reverend


Bezug
                
Bezug
Beweisen, dass es Konvergiert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 Mi 16.05.2012
Autor: kleinerGleich

OK Danke,
Eine 2. Meinung hilft immer ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]