matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweise (2n über k) = ...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Beweise (2n über k) = ...
Beweise (2n über k) = ... < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise (2n über k) = ...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mi 09.11.2005
Autor: fvs

Die Aufgabe lautet:

Beweisen Sie:   [mm] \vektor{2n \\ n} [/mm] =  [mm] \summe_{k=0}^{n} \vektor{n \\ k}². [/mm]

Ich habe gar keine Idee, ich hoffe, dass mir jemand helfen kann.
Natürlich habe ich den Induktionsanfang bewiesen. .Ich habe dann angenommen, dass die Aussage auch für n+1 wahr ist, Wenn ich die rechte Seite "aufdrösel" erhalte ich [mm] 2^n+1. [/mm] Das bekomme ich allerdings nicht auf der linken Seite heraus.

Ich habe diese Frage noch in keinem anderen Forum gestellt.

        
Bezug
Beweise (2n über k) = ...: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Do 10.11.2005
Autor: Stefan

Hallo!

Man hat jetzt zwei Möglichkeiten: Entweder man zieht eine fiese Induktion durch oder aber man löst die Aufgabe elegant. Ich entscheide mich für letzteres.

Betrachte die Menge [mm] $M:=\{x_1,\ldots,x_n,y_1,\ldots,y_n\}$ [/mm] mit $2n$ verschiedenen Elementen. Die $n$-elementigen Teilmengen dieser Klassen zerfallen in $n+1$ Klassen [mm] $A_i$ ($i=0,\ldots,n-1)$, [/mm] wobei in [mm] $A_i$ [/mm] diejenigen Teilmengen liegen, die $i$ der [mm] $x_j$'s [/mm] und $n-i$ der [mm] $y_j$'s [/mm] enthalten. Bekanntlich enthält [mm] $A_i$ [/mm] dann

${n [mm] \choose [/mm] i } [mm] \cdot [/mm] {n [mm] \choose [/mm] n-i} = {n [mm] \choose i}^2$ [/mm]

Elemente. Damit ergibt sich die Anzahl aller $n$-elementigen Teilmengen von $M$ als

[mm] $\sum\limits_{i=0}^n [/mm] {n [mm] \choose i}^2$ [/mm]  .

Andererseits ist diese Anzahl aber bekanntlich gleich ${2n [mm] \choose [/mm] n}$.

Das war'S.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]