matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Beweisart
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Beweisart
Beweisart < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisart: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Mi 01.10.2008
Autor: mexoticom

Hallo Freunde,

es geht um den Beweis für die Abschätzung  [mm]\left| T'(x) \right| \le n \cdot max \left| T(x) \right|[/mm]  
des Polynoms [mm]T(x)=A+\sum_{k=1}^n (a_k cos kx + b_k sin kx)[/mm].
Wenn der Beweisanfang so lautet:
Wir nehmen an, es sei [mm]max \left| T'(x) \right|=nL[/mm]  mit  [mm]L>max\left| T(x) \right| [/mm]

Wenn es richtig sein sollte müsste doch [mm]L=max\left| T(x) \right| [/mm]  
sein, oder irre ich mich jetzt?
Zum Schluss gibt es zuviele Nullstellen, sodass die Funktion eine Konstante sein müsste (welche sie ja nicht ist). Dieser Widerspruch soll den satz beweisen.

Liege ich da mit meiner Vermutung richtig?

Gruß mexo

        
Bezug
Beweisart: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 01.10.2008
Autor: fred97


> Hallo Freunde,
>  
> es geht um den Beweis für die Abschätzung  [mm]\left| T'(x) \right| \le n \cdot max \left| T(x) \right|[/mm]
>  
> des Polynoms [mm]T(x)=A+\sum_{k=1}^n (a_k cos kx + b_k sin kx)[/mm].
>  
> Wenn der Beweisanfang so lautet:
>  Wir nehmen an, es sei [mm]max \left| T'(x) \right|=nL[/mm]  mit  
> [mm]L>max\left| T(x) \right|[/mm]
>  
> Wenn es richtig sein sollte müsste doch [mm]L=max\left| T(x) \right|[/mm]
>  
> sein, oder irre ich mich jetzt?

Ja. Da muß   [mm] "\le" [/mm] stehen


>  Zum Schluss gibt es zuviele Nullstellen, sodass die
> Funktion eine Konstante sein müsste (welche sie ja nicht
> ist). Dieser Widerspruch soll den satz beweisen.

Wer soll das verstehen ???

FRED


>  
> Liege ich da mit meiner Vermutung richtig?
>  
> Gruß mexo


Bezug
                
Bezug
Beweisart: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Mi 01.10.2008
Autor: mexoticom

Hallo Fred,

ok, wenn da kleiner gleich stehen muss ist das so eine
Art Widerspruchsbeweis, oder?

Bezug
                        
Bezug
Beweisart: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Mi 01.10.2008
Autor: fred97

Nein. So hab ich das nicht gemeint.

Wenn Du annimmst

$ max [mm] \left| T'(x) \right|=nL [/mm] $  mit  $ [mm] L>max\left| T(x) \right| [/mm] $


dann machst Du schon einen Widerspruchsbeweis

FRED

Bezug
                                
Bezug
Beweisart: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 Mi 01.10.2008
Autor: mexoticom

Ja, genau dies hatte ich gemeint.

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]