Beweis zu Abbildungsmatrizen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:04 Do 09.01.2014 | Autor: | dodo1924 |
Aufgabe | Sei E die kanonische Basis des [mm] K^n. [/mm] Sei [mm] L:K^n [/mm] -> [mm] K^n [/mm] mit [mm] L(e_i) [/mm] := [mm] v_i, [/mm] i = 1...n.
Dabei sind die Vektoren [mm] e_i [/mm] Basisvektoren aus E und [mm] v_i [/mm] sein Vektoren aus dem [mm] K^n. [/mm] Begründe, dass die Spalten der Matrix [mm] [L]_E [/mm] aus den [mm] v_i [/mm] bestehen. |
Auch diese Aufgabe scheint mir ziemlich unsinnig.
Da [mm] L(e_i) [/mm] := [mm] v_i [/mm] und die Abbildungsmatrix ja aus den Bildern der Basisvektoren, also aus allen [mm] e_i, [/mm] entsteht, liegt hier in der Angabe ja mehr oder weniger bereits die Lösung!
Antwort: die Spalten der Matrix [mm] [L]_E [/mm] bestehen aus den [mm] v_i, [/mm] da die [mm] v_i [/mm] die bilder der Basisvektoren [mm] e_i [/mm] sind!
richtig???
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:10 Do 09.01.2014 | Autor: | Diophant |
Hallo,
ich würde dich bitten, jede neue Aufgabe auch in einem neuen Thread abzuhandeln. Ich habe hierzu die obige Frage von dem alten Thread abgespalten und dem ganzen mal noch einen neuen Titel verpasst. Wenn dir der nicht zusagt, kannst du ihn selbst ändern oder einen Moderator darum bitten.
Gruß, Diophant
|
|
|
|
|
> Sei E die kanonische Basis des [mm]K^n.[/mm] Sei [mm]L:K^n[/mm] -> [mm]K^n[/mm] mit
> [mm]L(e_i)[/mm] := [mm]v_i,[/mm] i = 1...n.
> Dabei sind die Vektoren [mm]e_i[/mm] Basisvektoren aus E und [mm]v_i[/mm]
> sein Vektoren aus dem [mm]K^n.[/mm] Begründe, dass die Spalten der
> Matrix [mm][L]_E[/mm] aus den [mm]v_i[/mm] bestehen.
>
> Auch diese Aufgabe scheint mir ziemlich unsinnig.
>
> Da [mm]L(e_i)[/mm] := [mm]v_i[/mm] und die Abbildungsmatrix ja aus den
> Bildern der Basisvektoren, also aus allen [mm]e_i,[/mm] entsteht,
> liegt hier in der Angabe ja mehr oder weniger bereits die
> Lösung!
Hallo,
nein, so ist das nicht gedacht.
Du sollst davon ausgehen, daß Du nicht weißt, was in den Spalten der Darstellungsmatrix steht, und sollst nun herausarbeiten, warum das die Bilder der Standardbasisvektoren sind.
LG Angela
>
> Antwort: die Spalten der Matrix [mm][L]_E[/mm] bestehen aus den [mm]v_i,[/mm]
> da die [mm]v_i[/mm] die bilder der Basisvektoren [mm]e_i[/mm] sind!
> richtig???
|
|
|
|