Beweis x<y -> [x]<[y] < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:42 Fr 18.10.2013 | Autor: | Catman |
Aufgabe | Für x [mm] \in \IR [/mm] bezeichne [x] die größte Zahl [mm] \le [/mm] x
a) Zeigen Sie: x [mm] \le [/mm] y -> [x] [mm] \le [/mm] [y] Für alle x,y [mm] \in \IR
[/mm]
b) Ist eine der beiden Regeln [x+y] [mm] \le [/mm] [x]+[y] bzw. [x+y] [mm] \ge [/mm] [x] + [y] für x,y [mm] \in \IR [/mm] allgemeingültig? |
Guten Abend zusammen,
Also bei der a) ist es ja selbstverständlich, dass eine Zahl die [mm] \le [/mm] einer anderen Zahl ist immer auch kleiner bleibt wenn man von beiden zur nächst kleiner Zahl geht. Ich weiß nur nicht, wie ich das allgemein mathematisch aufschreiben kann. Vielleicht kann da jemand helfen?
Zu b) Also das erste kann ja nicht allgemeingültig sein, da z.b. bei x=9,6 und y=9,6 die Zahl größer ist.
Das zweite hingegen müsste stimmen, da die Summe aus x und y ja entweder größer werden kann, wenn eine neue "Stelle" erreicht wird, wie im beispiel oben, oder sie bleibt gleich, wenn das nicht passiert. Auch hier weiß ich jedoch nicht, wie ich das formal aufschreiben soll.
Vielen Dank schonmal für eure Hilfe.
Gruß
Andy
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:11 Fr 18.10.2013 | Autor: | Teufel |
Hi!
Ok, schreiben wir mal $[x]$ so auf: [mm] $[x]=\max(\IZ \cap (-\infty, [/mm] x])$. Ist nun [mm] $x\le [/mm] y$, dann folgt [mm] $\IZ \cap (-\infty, [/mm] x] [mm] \subseteq \IZ \cap (-\infty, [/mm] y]$. Was folgt dann,w enn man [mm] \max [/mm] auf beiden Seiten anwendet?
Zur anderen Aufgabe: Genau, für erste hast du ein Gegenbeispiel.
Für die zweite Aussage: Es gilt [mm] $x+y\ge [/mm] [x]+[y]$. Jetzt wende Aufgabe a) an.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:06 Sa 19.10.2013 | Autor: | Catman |
> Hi!
>
> Ok, schreiben wir mal [mm][x][/mm] so auf: [mm][x]=\max(\IZ \cap (-\infty, x])[/mm].
> Ist nun [mm]x\le y[/mm], dann folgt [mm]\IZ \cap (-\infty, x] \subseteq \IZ \cap (-\infty, y][/mm].
> Was folgt dann,w enn man [mm]\max[/mm] auf beiden Seiten anwendet?
>
> Zur anderen Aufgabe: Genau, für erste hast du ein
> Gegenbeispiel.
> Für die zweite Aussage: Es gilt [mm]x+y\ge [x]+[y][/mm]. Jetzt
> wende Aufgabe a) an.
Also würde dann einfach mit max das da stehen was für [x] da stand und daraus dann folgen, dass [x] [mm] \le [/mm] [y] ist?
bzw.: [mm] \max(\IZ \cap (-\infty, [/mm] x]) [mm] \le \max(\IZ \cap (-\infty, [/mm] y]) [mm] \gdw [/mm] [x] [mm] \le [/mm] [y] und damit wäre der Beweis bereits abgeschlossen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:51 So 20.10.2013 | Autor: | fred97 |
> > Hi!
> >
> > Ok, schreiben wir mal [mm][x][/mm] so auf: [mm][x]=\max(\IZ \cap (-\infty, x])[/mm].
> > Ist nun [mm]x\le y[/mm], dann folgt [mm]\IZ \cap (-\infty, x] \subseteq \IZ \cap (-\infty, y][/mm].
> > Was folgt dann,w enn man [mm]\max[/mm] auf beiden Seiten anwendet?
> >
> > Zur anderen Aufgabe: Genau, für erste hast du ein
> > Gegenbeispiel.
> > Für die zweite Aussage: Es gilt [mm]x+y\ge [x]+[y][/mm]. Jetzt
> > wende Aufgabe a) an.
>
>
> Also würde dann einfach mit max das da stehen was für [x]
> da stand und daraus dann folgen, dass [x] [mm]\le[/mm] [y] ist?
> bzw.: [mm]\max(\IZ \cap (-\infty,[/mm] x]) [mm]\le \max(\IZ \cap (-\infty,[/mm]
> y]) [mm]\gdw[/mm] [x] [mm]\le[/mm] [y] und damit wäre der Beweis bereits
> abgeschlossen?
Ja
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:39 So 20.10.2013 | Autor: | Catman |
Vielen Dank.
|
|
|
|