matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesBeweis von (a+b)^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Beweis von (a+b)^n
Beweis von (a+b)^n < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von (a+b)^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 So 28.10.2012
Autor: maqio

Aufgabe
Sei n [mm] \in [/mm] R. Beweisen Sie:

- für alle a, b [mm] \in [/mm] R gilt [mm] (a+b)^{n} [/mm] = [mm] \summe_{k=0}^{n} \vektor{n \\ k} a^{n-k} b^{k} [/mm]


Ich bin verzweifelt. Ich finde keine Lösungsansatz und weis erst recht nicht was es mit dem Summenzeichen auf sich hat. Wenn ich dies beweisen soll, muss man das Summenzeichen doch irgendwie auflösen?

Könnte mir jemand Schritt für Schritt das Lösen dieser Aufgabe erklären?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

LG

        
Bezug
Beweis von (a+b)^n: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 So 28.10.2012
Autor: M.Rex

Hallo.

> Sei n [mm]\in[/mm] R. Beweisen Sie:
>  
> - für alle a, b [mm]\in[/mm] R gilt [mm](a+b)^{n}[/mm] = [mm]\summe_{k=0}^{n} \vektor{n \\ k} a^{n-k} b^{k}[/mm]
>  
> Ich bin verzweifelt. Ich finde keine Lösungsansatz und
> weis erst recht nicht was es mit dem Summenzeichen auf sich
> hat. Wenn ich dies beweisen soll, muss man das
> Summenzeichen doch irgendwie auflösen?
>  
> Könnte mir jemand Schritt für Schritt das Lösen dieser
> Aufgabe erklären?

Das ist der sogenannte binomische Lehrsatz, der Beweis dazu ist unter [url=http://www.mathematik.uni-kassel.de/~specovi/VORLESUNGEN/ANALYSIS/ANALYSIS-I/WS06-07/6-Binomi.pdf]diesem Link[/ulr] der Uni Kassel hervorragend erklärt.

Marius


Bezug
                
Bezug
Beweis von (a+b)^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 So 28.10.2012
Autor: maqio

Ok danke. Jetzt habe ich es verstanden =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]