matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenBeweis von Ordnungsrelationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Relationen" - Beweis von Ordnungsrelationen
Beweis von Ordnungsrelationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Ordnungsrelationen: Korrektur der Lösung
Status: (Frage) für Interessierte Status 
Datum: 18:47 So 23.10.2011
Autor: dramaturk

Aufgabe
Zeigen Sie die folgende Aussage:
Sei [mm] <_M [/mm] eine strikte Ordnungsrelation auf einer Menge M. Dann wird durch  [mm] a \le_M b [/mm]    a [mm] <_M [/mm] b oder a = b
eine teilweise Ordnung [mm] \le_M [/mm] auf M definiert.


   Def. strikte Ordnung: asymmetrisch und transitiv.
   Def. teilweise Ordnung: asymmetrisch, transitiv, reflexiv

   es folgen die Def. für die einzelnen Relationen:
   (1) asymmetrisch: [mm] \forall [/mm] (a,b) [mm] \in [/mm] M : (a,b) [mm] \in [/mm] R => (b,a) [mm] \not\in [/mm] R , d.h.  aRb und bRa
   (2) transitiv:    [mm] \forall [/mm] (a,b,c) [mm] \in [/mm] M : (a,b) [mm] \in [/mm] R und (b,c) [mm] \in [/mm] R => (a,c) [mm] \in [/mm] R
   (3) reflexiv:     [mm] \forall [/mm] (a,b) [mm] \in [/mm] M : (a,b) [mm] \in [/mm] R


Zu zeigen: [mm] \le [/mm] ist eine teilweise Ordnung auf M


Es gilt also Asymmetrie, Transivität und Reflexivität zu beweisen:

Asymmetrie:  Beweis durch Widerspruch
             zu zeigen: a < b und [mm] \neg [/mm] (b < a)
Annahme:  a < b und b < a  
         a-b < 0 und b-a < 0
        => (a-b) + (b-a) < 0
                     = 0 < 0  (Widerspruch!)

Transitivität: zu zeigen: wenn a < b und b < c => a < c
         a-b < 0 und b-c < 0
    =>  (a-b)+(b-c) < 0
       = a-b + b-c  < 0
       = a - c      < 0   q.e.d.


Reflexivität: zu zeigen: a = b


Bei der Reflexivität bin ich mir nicht sicher, wie ich dieses beweisen soll. Hier wäre ein Tipp oder Denkansatz sehr nett von euch.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. lg, Mirco


        
Bezug
Beweis von Ordnungsrelationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 So 23.10.2011
Autor: mmhkt

Hallo dramaturk,
Du hast diese Frage zweimal eingestellt.
Was möglicherweise versehentlich passiert ist - am ersten Tag kann das schon mal vorkommen.

Unter dem grauen Eingabefeld (für Frage oder Antwort) findet sich ein Hinweis auf die Forenregeln, dort steht unter Nummer 4 etwas zu "Doppelposts und Hinweise auf Crossposts".

Der Rest ist auch nicht uninteressant.

Schönen Restsonntag
mmhkt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]