matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis Überabzählbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Beweis Überabzählbarkeit
Beweis Überabzählbarkeit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Überabzählbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Do 08.11.2007
Autor: dieanne

Aufgabe
Es sei M die Menge aller Folgen {x (idex)n} (n element N) mit x (index) n element {0,1}. Beweisen Sie, das die Menge M überabzählbar ist!

Hallo,

also ich habe mir dazu erstmal, überlegt was ich eigentlich tun soll:
Hab es so verstanden, dass ich überabzählbar unendlich viele Folgen x (index) n habe, die alle nur aus den Elementen null und eins bestehen, diese Elemente können aber ganz beliebig angeordnet sein. Es soll nun überabzählbar viele solcher Folgen geben, d. h. man könnte die Überabzählbarkeit mit dem Cantorschen Diagonalverfahren zeigen.
Wie geht das in dem Beispiel? Und wie schreibe ich es mathematisch korekt auf?

Vielen Dank für eure Antworten!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Überabzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:49 Fr 09.11.2007
Autor: MatthiasKr

Hallo,
> Es sei M die Menge aller Folgen {x (idex)n} (n element N)
> mit x (index) n element {0,1}. Beweisen Sie, das die Menge
> M überabzählbar ist!
>  Hallo,
>  
> also ich habe mir dazu erstmal, überlegt was ich eigentlich
> tun soll:

das ist das richtige vorgehen... ;-)

>  Hab es so verstanden, dass ich überabzählbar unendlich
> viele Folgen x (index) n habe, die alle nur aus den
> Elementen null und eins bestehen, diese Elemente können
> aber ganz beliebig angeordnet sein. Es soll nun
> überabzählbar viele solcher Folgen geben, d. h. man könnte
> die Überabzählbarkeit mit dem Cantorschen Diagonalverfahren
> zeigen.
>  Wie geht das in dem Beispiel? Und wie schreibe ich es
> mathematisch korekt auf?
>  

hast du das cantor-verfahren verstanden, mit dem man die ueberabzaehlbar keit der reelen zahlen zeigt? wenn ja, ist diese aufgabe easy, sie ist quasi identisch. wenn nein, schau dir das in deiner vorlesung nochmal gut an.
reelle zahlen sind im grunde nichts anderes als folgen [mm] $x_n$, [/mm] bei denen jedes folgenglied in [mm] $\lbrace 0,1,2,\ldots,9\rbrace$ [/mm] liegt. Die menge der folgen in deiner aufgabe ist also nichts anderes als fliesskomma-binaerzahlen.

gruss
matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]