matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenBeweis tanh
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Beweis tanh
Beweis tanh < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis tanh: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Di 08.05.2012
Autor: Ciotic

Aufgabe
Zeigen Sie aus definierten Gleichungen, dass $tanh(-x)=-tanh(x)$ gilt.

Hallo zusammen, oben genannte Aussage gilt es zu beweisen.

Mein Ansatz:

[mm] $tanh(x)=\bruch{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ [/mm]

[mm] $tanh(-x)=\bruch{e^{-x}-e^{x}}{e^{-x}+e^{x}}$ [/mm]

Dann weiß ich nicht weiter. Ansatz wäre ein - vor den Term zu setzen, dann müsste ich den auch [mm] $Term^{-1}$ [/mm] nehmen, was mich aber nicht weiterbringt.

Danke!

        
Bezug
Beweis tanh: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Di 08.05.2012
Autor: Diophant

Hallo,

> Zeigen Sie aus definierten Gleichungen, dass
> [mm]tanh(-x)=-tanh(x)[/mm] gilt.
> Hallo zusammen, oben genannte Aussage gilt es zu beweisen.
>
> Mein Ansatz:
>
> [mm]tanh(x)=\bruch{e^{x}-e^{-x}}{e^{x}+e^{-x}}[/mm]
>
> [mm]tanh(-x)=\bruch{e^{-x}-e^{x}}{e^{-x}+e^{x}}[/mm]
>
> Dann weiß ich nicht weiter. Ansatz wäre ein - vor den
> Term zu setzen, dann müsste ich den auch [mm]Term^{-1}[/mm] nehmen,
> was mich aber nicht weiterbringt.

nein, das geht doch so einfach:

[mm] tanh(-x)=\bruch{e^{-x}-e^{x}}{e^{-x}+e^{x}}=-\bruch{e^{x}-e^{-x}}{e^{x}+e^{-x}}=-tanh(x) [/mm]


Gruß, Diophant


Bezug
                
Bezug
Beweis tanh: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:44 Di 08.05.2012
Autor: Ciotic

Vielen Dank.

Eines meiner größten Probleme mit derm Mathematik ist mein kompliziertes denken. Es kann so einfach sein ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]