matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenBeweis mit Anordnungsaxiomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Komplexe Zahlen" - Beweis mit Anordnungsaxiomen
Beweis mit Anordnungsaxiomen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Anordnungsaxiomen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:00 Sa 21.11.2009
Autor: azrael1

Aufgabe
Beweisen Sie, dass auf [mm] \IC [/mm] keine Ordnungsrealtion existiert, die den Anordnungsaxiomen (A6) - (A8) (eines Koerpers) genuegt.

Nun weiss ich erstmal nicht, ob die Bezeichnungen fuer die Anordnungsaxiome allgemein definiert sind, oder ob unser Prof die eben so eingefuehrt hat.
Ok also die Anordnungsaxiome waeren:
1. fuer zwei Elemente a,b gilt genau eine der folgenden Beziehungen a=b, a>b, a<b
2. a<b [mm] \wedge [/mm] b<c [mm] \Rightarrow [/mm] a<c
3. a<b [mm] \Rigtharrow [/mm] a+c < b+c, a<b [mm] \Rightarrow [/mm] ac<bc
Hab hier nun mal die ganzen a,b,c [mm] \in [/mm] >0 usw weggelassen

Also man hat uns den Tipp gegeben, hier einen Widerspruchsbeweis zu fuehren und evtl. 0,i mit 0>i und 0<i zu verwenden.
Wie fange ich jedoch erst an?
Also ich dachte, man schreibt nun [mm] \exists [/mm] Ordungsrealtion [mm] \IC [/mm] aber dann???
Was ist dann ueberhaupt zu beweisen??

        
Bezug
Beweis mit Anordnungsaxiomen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:05 So 22.11.2009
Autor: ms2008de

Hallo
> Beweisen Sie, dass auf [mm]\IC[/mm] keine Ordnungsrealtion
> existiert, die den Anordnungsaxiomen (A6) - (A8) (eines
> Koerpers) genuegt.
>  Nun weiss ich erstmal nicht, ob die Bezeichnungen fuer die
> Anordnungsaxiome allgemein definiert sind, oder ob unser
> Prof die eben so eingefuehrt hat.
>  Ok also die Anordnungsaxiome waeren:
>  1. fuer zwei Elemente a,b gilt genau eine der folgenden
> Beziehungen a=b, a>b, a<b
>  2. a<b [mm]\wedge[/mm] b<c [mm]\Rightarrow[/mm] a<c
>  3. a<b [mm]\Rigtharrow[/mm] a+c < b+c, a<b [mm]\Rightarrow[/mm] ac<bc
>  Hab hier nun mal die ganzen a,b,c [mm]\in[/mm] >0 usw weggelassen
>  
> Also man hat uns den Tipp gegeben, hier einen
> Widerspruchsbeweis zu fuehren und evtl. 0,i mit 0>i und 0<i
> zu verwenden.
>  Wie fange ich jedoch erst an?
> Also ich dachte, man schreibt nun [mm]\exists[/mm] Ordungsrealtion
> [mm]\IC[/mm] aber dann???
>  Was ist dann ueberhaupt zu beweisen??

Na was zu beweisen ist, steht doch in der Aufgabenstellung.
Ich kenn das so : Ang. i>0 , dann müsste aber aber auch i*i=-1 > 0 sein - Widerspruch.
Ang. i<0, dann wäre -i>0 und somit [mm] (-i)^2 [/mm] =-1 > 0 sein - Widerspruch.
Und ang. i=0 dann wäre [mm] i^2= [/mm] -1 = [mm] 0^2 [/mm] = 0 - Widerspruch.
Also ist [mm] \IC [/mm] kein geordneter Körper.
Wir haben eben vorher definiert, dass für x,y aus einem geordneten Körper mit x>0 , y>0 [mm] \Rightarrow [/mm] xy>0  und eben noch vorher bewiesen, dass für x>0 in einem geordneten Körper -x<0 ist und umgekehrt und zwar weil: Wenn x>0 ist, gilt: 0= (-x) + x > (-x)+0 = -x also ist -x <0, die andere Richtung würde analog gehen.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]