matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBeweis für fast-additive Abb.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Beweis für fast-additive Abb.
Beweis für fast-additive Abb. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für fast-additive Abb.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:40 Do 01.10.2009
Autor: Babybel73

Hallo zusammen
Ich muss in Gemetrie folgende Aufgabe lösen:
p: [mm] \IZ [/mm] --> [mm] \IZ [/mm]
p hat die Eigenschaften:
1. p(-n) = -p(n) für alle n [mm] \in \IZ [/mm]
2. [mm] \exists D\in\IN, [/mm]
   so dass [mm] \forall [/mm] n,m [mm] \in\IN [/mm] : |p(n+m)-p(n)-p(m)|<=D

Nun sollte ich das ganze für 4 Fälle beweisen.

1. Fall: m<0, n<0
|p(-n-m)-p(-n)-p(-m)=|-p(n+m)+p(n)+p(m)|
=|p(n+m)-(p(n)+p(m))|=|p(n+m)-p(n)-P(m)<=D

2. Fall: m=0 (analog dazu: n=0)

3. Fall: m>0, n<0, m>=n (analog dazu: n>0, m<0, n>=m)

4. Fall: m>0, n<0, m<n (analog dazu: n>0, m<0, n<m)

Wie beweise ich denn jetzt, dass p für Fall 2 - Fall 4 auch fast additiv ist??

Grüsse Babybel

        
Bezug
Beweis für fast-additive Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Do 01.10.2009
Autor: felixf

Hallo!

> Hallo zusammen
>  Ich muss in Gemetrie folgende Aufgabe lösen:
>  p: [mm]\IZ[/mm] --> [mm]\IZ[/mm]

>  p hat die Eigenschaften:
>  1. p(-n) = -p(n) für alle n [mm]\in \IZ[/mm]
>  2. [mm]\exists D\in\IN,[/mm]
> so dass [mm]\forall[/mm] n,m [mm]\in\IN[/mm] : |p(n+m)-p(n)-p(m)|<=D

Und du willst das jetzt fuer alle $n, m [mm] \in \IZ$ [/mm] beweisen?

> Nun sollte ich das ganze für 4 Fälle beweisen.
>  
> 1. Fall: m<0, n<0
>  |p(-n-m)-p(-n)-p(-m)=|-p(n+m)+p(n)+p(m)|
>  =|p(n+m)-(p(n)+p(m))|=|p(n+m)-p(n)-P(m)<=D
>  
> 2. Fall: m=0 (analog dazu: n=0)

Da $p(0) = 0$ ist nach 1. ist dies trivial.

> 3. Fall: m>0, n<0, m>=n (analog dazu: n>0, m<0, n>=m)
>  
> 4. Fall: m>0, n<0, m<n (analog dazu: n>0, m<0, n<m)

Es ist jeweils $|m| [mm] \ge [/mm] |n|$ bzw. $|m| < |n|$ gemeint, oder? Andernfalls kan fuer $m > 0$, $n < 0$ niemals $m < n$ gelten.

> Wie beweise ich denn jetzt, dass p für Fall 2 - Fall 4
> auch fast additiv ist??

Der Trick liegt hier darin, die obige Gleichung fuer [mm] $\IN$ [/mm] zu benutzen und dabei $n + m$ und (z.B.) $n$ zu vertauschen.

Mal etwas konkreter, nehmen wir uns den 4. Fall. Dann gilt $m > 0$, $n < 0$ und $m = |m| < |n| = -n$; insbesondere ist $-n > 0$ und $m + n < 0$.

Du hast also $p(n + m) - p(n) - p(m) = -p(-(n + m)) + p(-n) - p(m) = p(-n) - p(-(n + m)) - p(m)$. Setze $a := -(n + m) > 0$ und $b := m > 0$: dann gilt $a + b = -n > 0$, und nach Voraussetzung gilt $|p(a + b) - p(a) - p(b)| [mm] \le [/mm] D$. Setzt du jetzt $a$ und $b$ zurueck ein, erhaelst du $|p(n + m) - p(n) - p(m)| [mm] \le [/mm] D$.

LG Felix


Bezug
                
Bezug
Beweis für fast-additive Abb.: Fall 4
Status: (Frage) beantwortet Status 
Datum: 22:07 Do 01.10.2009
Autor: Babybel73

Hallo Felix

Wieso gilt insbesondere: -n>0???

Und wenn ich nun -n und m in die Gleichung für eine fast-additive Abbildung einsetze gibt das doch:
p(m-n)-p(m)-p(-n)=p(m-n)-p(m)+p(n)? Was muss ich jetzt da vertauschen?

LG

Bezug
                        
Bezug
Beweis für fast-additive Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 04:47 Fr 02.10.2009
Autor: felixf

Hallo

> Wieso gilt insbesondere: -n>0???

Weil $n < 0$ ist?

> Und wenn ich nun -n und m in die Gleichung für eine
> fast-additive Abbildung einsetze gibt das doch:
>  p(m-n)-p(m)-p(-n)=p(m-n)-p(m)+p(n)? Was muss ich jetzt da
> vertauschen?

Na, du musst das nicht ganz stumpf einsetzen, sondern etwas geschickter. Ich hab's dir immerhin vorgerechnet, schau dir das doch mal an.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]