matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBeweis für Untergruppe gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Beweis für Untergruppe gesucht
Beweis für Untergruppe gesucht < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für Untergruppe gesucht: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:53 So 20.11.2016
Autor: Benutzername10

Aufgabe
Zeige, dass die Menge A der Elemente endlicher Ordnung einer abelschen Gruppe T stets eine
Untergruppe von T  ist.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/forum/Zeige-das-die-Elemente-endlicher-Ordnung
Ich weiß nicht recht wie ich das ganze löse...
Mein Wissen: endliches Element ist dann gegeben wenn es ein eine Zahl gibt , welche als Exponent mit dem Element als Basis das neutrale Element ergibt. a n  = e   an=e
e :=   e:= neutrale Element.
Abelsche Gruppe: Eine Abelsche Gruppe ist eine Gruppe in der das Kommutativgesetz herrscht,(a*b=b*a, a   a,b∈T).

Gegeben:
- Eine Menge A mit den Elementen endlicher Ordnung.
- Abelschle Gruppe T  
Gesucht: Der Beweis das A eine Untergruppe von T    ist.
Wann ist A eine Untergruppe von T?
A ist eine Untergruppe von T   wenn Sie eine Teilmenge von T    ist, und mit der Verknüpfüng von T   selbst wieder eine Gruppe darstellt.

Ich bitte um Hilfe oder eine vollständige Lösung mit Erklärung.


        
Bezug
Beweis für Untergruppe gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 So 20.11.2016
Autor: leduart

Hallo
du weisst a [mm] \in [/mm] A [mm] a^n=e [/mm] wenn [mm] a\not=e [/mm] -> n>1 und [mm] n\lem=|T|= [/mm] Ordnung von T
dann hast du  [mm] a^{m-1}=e [/mm]
nimm a, b in A dann auch [mm] a^{-1}, b^{-1} [/mm] in A warum
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]