matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBeweis einer Teilmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Beweis einer Teilmenge
Beweis einer Teilmenge < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 Do 24.04.2014
Autor: Cyborg

Aufgabe
Es sei p [mm] \ge [/mm] 1, [mm] L^{p}:= [/mm] { X: [mm] Grundraum(GrossOmega)\to \IR |E(|X|^{p}) [/mm] < [mm] \infty [/mm] }

Zeigen Sie, dass für 1 [mm] \le [/mm] p [mm] \le [/mm] q < [mm] \infty [/mm] gilt: [mm] L^{q} \subset L^{p} [/mm]

Kann mir jemand vielleicht erklären, was genau dieses [mm] L^{p} [/mm] bedeutet?
Also alle X aus dem Grundraum werden abgebildet auf die reellen Zahlen mit bedingten Erwartungswert von X-Betrag hoch p oder wie?

Leider habe ich auch keine Idee wie man bei dem Beweis anfangen soll, könnte mir da jemand weiterhelfen?

Also würde da jetzt irgendwie so anfangen:


mit 1 [mm] \le [/mm] p [mm] \le [/mm] q < [mm] \infty [/mm]  folgt:


[mm] L^{p}:= [/mm] { X: [mm] (GrossOmega)\to \IR |E(|X|^{p}) [/mm] < [mm] \infty [/mm] } [mm] \le L^{q}:= [/mm] { X: [mm] (GrossOmega)\to \IR |E(|X|^{q}) [/mm] < [mm] \infty [/mm] }

[mm] \Rightarrow L^{p}:= [/mm] { X: [mm] (GrossOmega)\to \IR |E(|X|^{p}) [/mm] } [mm] \le L^{q}:= [/mm] { X: [mm] (GrossOmega)\to \IR |E(|X|^{q}) [/mm]  }   < [mm] \infty [/mm]

.....

[mm] \Rightarrow L^{p}:= [/mm] { X: [mm] (GrossOmega)\to \IR |E(|X|^{p}) [/mm] < [mm] \infty [/mm] } [mm] \subset L^{q}:= [/mm] { X: [mm] (GrossOmega)\to \IR |E(|X|^{q}) [/mm] < [mm] \infty [/mm] }

        
Bezug
Beweis einer Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Do 24.04.2014
Autor: fred97

Gegeben ist ein Wahrscheinlichkeitsraum [mm] (\Omega, \Sigma, [/mm] P).

[mm] L^p:=\{ X:\Omega \to \IR: X \quad ist \quad messbar \quad und \quad\integral_{\Omega}^{}{|X(w)|^p dP(w)} < \infty \} [/mm]


Für den Beweis von $ [mm] L^{q} \subset L^{p} [/mm] $ siehe

http://www.math.uni-sb.de/ag/speicher/lehre/an3wise1112/LsgBlatt07AnIII.pdf, Aufgabe 4.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]